正方形 ABCD 的边长为1,点 O 是 BC 边上的一个动点(与 B , C 不重合),以 O 为顶点在 BC 所在直线的上方作 ∠ MON = 90 ° .
(1)当 OM 经过点 A 时,
①请直接填空: ON (可能,不可能)过 D 点;(图1仅供分析)
②如图2,在 ON 上截取 OE = OA ,过 E 点作 EF 垂直于直线 BC ,垂足为点 F ,作 EH ⊥ CD 于 H ,求证:四边形 EFCH 为正方形.
(2)当 OM 不过点 A 时,设 OM 交边 AB 于 G ,且 OG = 1 .在 ON 上存在点 P ,过 P 点作 PK 垂直于直线 BC ,垂足为点 K ,使得 S ΔPKO = 4 S ΔOBG ,连接 GP ,求四边形 PKBG 的最大面积.
李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍. (1)李明步行的速度(单位:米/分)是多少? (2)李明能否在联欢会开始前赶到学校?
如图所示,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE. (1)从图中任找两组全等三角形; (2)从(1)中任选一组进行证明.
如图,△ABC中,AB=AC,AE是外角∠DAC的角平分线. (1)填空:若∠DAC=140°,则∠B= ; (2)求证:AE∥BC.
如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠A两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)
如图,在平面直角坐标系XOY中,A(-1,5),B(-1,0),C(-4,3). (1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法); (2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′() (3)计算△ABC的面积.