初中数学

问题情境:如图1,在正方形 ABCD 中, E 为边 BC 上一点(不与点 B C 重合),垂直于 AE 的一条直线 MN 分别交 AB AE CD 于点 M P N .判断线段 DN MB EC 之间的数量关系,并说明理由.

问题探究:在“问题情境”的基础上.

(1)如图2,若垂足 P 恰好为 AE 的中点,连接 BD ,交 MN 于点 Q ,连接 EQ ,并延长交边 AD 于点 F .求 AEF 的度数;

(2)如图3,当垂足 P 在正方形 ABCD 的对角线 BD 上时,连接 AN ,将 ΔAPN 沿着 AN 翻折,点 P 落在点 P ' 处,若正方形 ABCD 的边长为4, AD 的中点为 S ,求 P ' S 的最小值.

问题拓展:如图4,在边长为4的正方形 ABCD 中,点 M N 分别为边 AB CD 上的点,将正方形 ABCD 沿着 MN 翻折,使得 BC 的对应边 B ' C ' 恰好经过点 A C ' N AD 于点 F .分别过点 A F AG MN FH MN ,垂足分别为 G H .若 AG = 5 2 ,请直接写出 FH 的长.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + 3 2 x + 2 x 轴交于点 A B ,与 y 轴交于点 C

(1)试求 A B C 的坐标;

(2)将 ΔABC AB 中点 M 旋转 180 ° ,得到 ΔBAD

①求点 D 的坐标;

②判断四边形 ADBC 的形状,并说明理由;

(3)在该抛物线对称轴上是否存在点 P ,使 ΔBMP ΔBAD 相似?若存在,请直接写出所有满足条件的 P 点的坐标;若不存在,请说明理由.

来源:2017年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

抛物线 y = - x 2 + 2 x + n 经过点 M ( - 1 , 0 ) ,顶点为 C

(1)求点 C 的坐标;

(2)设直线 y = 2 x 与抛物线交于 A B 两点(点 A 在点 B 的左侧).

①在抛物线的对称轴上是否存在点 G .使 AGC = BGC ?若存在,求出点 G 的坐标;若不存在,请说明理由;

②点 P 在直线 y = 2 x 上,点 Q 在抛物线上,当以 O M P Q 为顶点的四边形是平行四边形时,求点 Q 的坐标.

来源:2016年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图1,点 A 坐标为 ( 2 , 0 ) ,以 OA 为边在第一象限内作等边 ΔOAB ,点 C x 轴上一动点,且在点 A 右侧,连接 BC ,以 BC 为边在第一象限内作等边 ΔBCD ,连接 AD BC E

(1)①直接回答: ΔOBC ΔABD 全等吗?

②试说明:无论点 C 如何移动, AD 始终与 OB 平行;

(2)当点 C 运动到使 A C 2 = AE · AD 时,如图2,经过 O B C 三点的抛物线为 y 1 .试问: y 1 上是否存在动点 P ,使 ΔBEP 为直角三角形且 BE 为直角边?若存在,求出点 P 坐标;若不存在,说明理由;

(3)在(2)的条件下,将 y 1 沿 x 轴翻折得 y 2 ,设 y 1 y 2 组成的图形为 M ,函数 y = 3 x + 3 m 的图象 l M 有公共点.试写出: l M 的公共点为3个时, m 的取值.

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的边 AB x 轴上, AB BC 的长分别是一元二次方程 x 2 7 x + 12 = 0 的两个根 ( BC > AB ) OA = 2 OB ,边 CD y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 E 出发沿折线段 ED DA 向点 A 运动,运动的时间为 t ( 0 t < 6 ) 秒,设 ΔBOP 与矩形 AOED 重叠部分的面积为 S

(1)求点 D 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;

(3)在点 P 的运动过程中,是否存在点 P ,使 ΔBEP 为等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知: A B 两点在直线 l 的同一侧,线段 AO BM 均是直线 l 的垂线段,且 BM AO 的右边, AO = 2 BM ,将 BM 沿直线 l 向右平移,在平移过程中,始终保持 ABP = 90 ° 不变, BP 边与直线 l 相交于点 P

(1)当 P O 重合时(如图2所示),设点 C AO 的中点,连接 BC .求证:四边形 OCBM 是正方形;

(2)请利用如图1所示的情形,求证: AB PB = OM BM

(3)若 AO = 2 6 ,且当 MO = 2 PO 时,请直接写出 AB PB 的长.

来源:2018年广西贵港市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AC BD 交于点 O E BD 上一点, EF / / AB EAB = EBA ,过点 B DA 的垂线,交 DA 的延长线于点 G

(1) DEF AEF 是否相等?若相等,请证明;若不相等,请说明理由;

(2)找出图中与 ΔAGB 相似的三角形,并证明;

(3) BF 的延长线交 CD 的延长线于点 H ,交 AC 于点 M .求证: B M 2 = MF · MH

来源:2018年山东省泰安市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x 1 ) ( x 3 ) ( a > 0 ) x 轴交于 A B 两点,抛物线上另有一点 C x 轴下方,且使 ΔOCA ΔOBC

(1)求线段 OC 的长度;

(2)设直线 BC y 轴交于点 M ,点 C BM 的中点时,求直线 BM 和抛物线的解析式;

(3)在(2)的条件下,直线 BC 下方抛物线上是否存在一点 P ,使得四边形 ABPC 面积最大?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,经过原点 O 的抛物线 y = a x 2 + bx ( a 0 ) x 轴交于另一点 A ( 3 2 0 ) ,在第一象限内与直线 y = x 交于点 B ( 2 , t )

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点 C ,满足以 B O C 为顶点的三角形的面积为2,求点 C 的坐标;

(3)如图2,若点 M 在这条抛物线上,且 MBO = ABO ,在(2)的条件下,是否存在点 P ,使得 ΔPOC ΔMOB ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

定义:点 P ΔABC 内部或边上的点(顶点除外),在 ΔPAB ΔPBC ΔPCA 中,若至少有一个三角形与 ΔABC 相似,则称点 P ΔABC 的自相似点.

例如:如图1,点 P ΔABC 的内部, PBC = A BCP = ABC ,则 ΔBCP ΔABC ,故点 P ΔABC 的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,点 M 是曲线 y = 3 3 x ( x > 0 ) 上的任意一点,点 N x 轴正半轴上的任意一点.

(1)如图2,点 P OM 上一点, ONP = M ,试说明点 P ΔMON 的自相似点;当点 M 的坐标是 ( 3 3 ) ,点 N 的坐标是 ( 3 0 ) 时,求点 P 的坐标;

(2)如图3,当点 M 的坐标是 ( 3 , 3 ) ,点 N 的坐标是 ( 2 , 0 ) 时,求 ΔMON 的自相似点的坐标;

(3)是否存在点 M 和点 N ,使 ΔMON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

来源:2017年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,直线 y = kx + b ( k b 为常数)分别与 x 轴、 y 轴交于点 A ( 4 , 0 ) B ( 0 , 3 ) ,抛物线 y = x 2 + 2 x + 1 y 轴交于点 C

(1)求直线 y = kx + b 的函数解析式;

(2)若点 P ( x , y ) 是抛物线 y = x 2 + 2 x + 1 上的任意一点,设点 P 到直线 AB 的距离为 d ,求 d 关于 x 的函数解析式,并求 d 取最小值时点 P 的坐标;

(3)若点 E 在抛物线 y = x 2 + 2 x + 1 的对称轴上移动,点 F 在直线 AB 上移动,求 CE + EF 的最小值.

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 2 9 x 2 + bx + c 经过点 A ( 3 , 0 ) ,点 C ( 0 , 4 ) ,作 CD / / x 轴交抛物线于点 D ,作 DE x 轴,垂足为 E ,动点 M 从点 E 出发在线段 EA 上以每秒2个单位长度的速度向点 A 运动,同时动点 N 从点 A 出发在线段 AC 上以每秒1个单位长度的速度向点 C 运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为 t 秒.

(1)求抛物线的解析式;

(2)设 ΔDMN 的面积为 S ,求 S t 的函数关系式;

(3)①当 MN / / DE 时,直接写出 t 的值;

②在点 M 和点 N 运动过程中,是否存在某一时刻,使 MN AD ?若存在,直接写出此时 t 的值;若不存在,请说明理由.

来源:2016年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的对角线相交于点 O ,点 M N 分别是边 BC CD 上的动点(不与点 B C D 重合), AM AN 分别交 BD 于点 E F ,且 MAN 始终保持 45 ° 不变.

(1)求证: AF AM = 2 2

(2)求证: AF FM

(3)请探索:在 MAN 的旋转过程中,当 BAM 等于多少度时, FMN = BAM ?写出你的探索结论,并加以证明.

来源:2016年山东省淄博市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 1 3 x 2 + bx + c 经过 ΔABC 的三个顶点,其中点 A ( 0 , 1 ) ,点 B ( - 9 , 10 ) AC / / x 轴,点 P 是直线 AC 下方抛物线上的动点.

(1)求抛物线的解析式;

(2)过点 P 且与 y 轴平行的直线 l 与直线 AB AC 分别交于点 E F ,当四边形 AECP 的面积最大时,求点 P 的坐标;

(3)当点 P 为抛物线的顶点时,在直线 AC 上是否存在点 Q ,使得以 C P Q 为顶点的三角形与 ΔABC 相似,若存在,求出点 Q 的坐标,若不存在,请说明理由.

来源:2016年山东省潍坊市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知:如图,在矩形 ABCD 中, AB = 6 cm BC = 8 cm ,对角线 AC BD 交于点 O .点 P 从点 A 出发,沿 AD 方向匀速运动,速度为 1 cm / s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1 cm / s ;当一个点停止运动时,另一个点也停止运动.连接 PO 并延长,交 BC 于点 E ,过点 Q QF / / AC ,交 BD 于点 F .设运动时间为 t ( s ) ( 0 < t < 6 ) ,解答下列问题:

(1)当 t 为何值时, ΔAOP 是等腰三角形?

(2)设五边形 OECQF 的面积为 S ( c m 2 ) ,试确定 S t 的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使 S 五边形 OECQF : S ΔACD = 9 : 16 ?若存在,求出 t 的值;若不存在,请说明理由;

(4)在运动过程中,是否存在某一时刻 t ,使 OD 平分 COP ?若存在,求出 t 的值;若不存在,请说明理由.

来源:2016年山东省青岛市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题