已知:如图,在菱形 中,点 、 分别在边 、 上, , 的延长线交 的延长线于点 , 的延长线交 的延长线于点 .
[小题1]求证: ;
[小题2]如果 ,求证: .
如图,在直角梯形 中, , , , , .
(1)求梯形 的面积;
(2)联结 ,求 的正切值.
[小题1]求梯形 的面积;
[小题2]联结 ,求 的正切值.
综合与探究
如图,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 .直线 与抛物线交于 , 两点,与 轴交于点 ,点 的坐标为 .
(1)请直接写出 , 两点的坐标及直线 的函数表达式;
(2)若点 是抛物线上的点,点 的横坐标为 ,过点 作 轴,垂足为 . 与直线 交于点 ,当点 是线段 的三等分点时,求点 的坐标;
(3)若点 是 轴上的点,且 ,求点 的坐标.
某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积 , , 之间的关系问题”进行了以下探究:
类比探究
(1)如图2,在 中, 为斜边,分别以 , , 为斜边向外侧作 , , ,若 ,则面积 , , 之间的关系式为 ;
推广验证
(2)如图3,在 中, 为斜边,分别以 , , 为边向外侧作任意 , , ,满足 , ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;
拓展应用
(3)如图4,在五边形 中, , , , ,点 在 上, , ,求五边形 的面积.
如图,二次函数 的图象经过 , , 三点,以点 为位似中心,在 轴的右侧将 按相似比 放大,得到△ ,二次函数 的图象经过 , , 三点.
(1)画出△ ,试求二次函数 的表达式;
(2)点 在二次函数 的图象上, ,直线 与二次函数 的图象交于点 (异于点 .
①求点 的坐标(横、纵坐标均用含 的代数式表示)
②连接 ,若 ,求 的取值范围;
③当点 在第一象限内,过点 作 平行于 轴,与二次函数 的图象交于另一点 ,与二次函数 的图象交于点 , 在 的左侧),直线 与二次函数 的图象交于点 .△ △ ,则线段 的长度等于 .
如图1,四边形 是矩形,点 的坐标为 ,点 的坐标为 ,点 从点 出发,沿 以每秒1个单位长度的速度向点 运动,同时点 从点 出发,沿 以每秒2个单位长度的速度向点 运动,当点 与点 重合时运动停止.设运动时间为 秒.
(1)当 时,线段 的中点坐标为 ;
(2)当 与 相似时,求 的值;
(3)当 时,抛物线 经过 , 两点,与 轴交于点 ,抛物线的顶点为 ,如图2所示,问该抛物线上是否存在点 ,使 ?若存在,求出所有满足条件的 的坐标;若不存在,说明理由.
如图,将等腰直角三角形纸片 对折,折痕为 .展平后,再将点 折叠在边 上(不与 、 重合),折痕为 ,点 在 上的对应点为 ,设 与 交于点 ,连接 .已知 .
(1)若 为 的中点,求 的长;
(2)随着点 在边 上取不同的位置,
① 的形状是否发生变化?请说明理由;
②求 的周长的取值范围.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图,在边长为1的正方形 中,动点 、 分别在边 、 上,将正方形 沿直线 折叠,使点 的对应点 始终落在边 上(点 不与点 、 重合),点 落在点 处, 与 交于点 ,设 .
(1)当 时,求 的值;
(2)随着点 在边 上位置的变化, 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;
(3)设四边形 的面积为 ,求 与 之间的函数表达式,并求出 的最小值.
如图①,直线 表示一条东西走向的笔直公路,四边形 是一块边长为100米的正方形草地,点 , 在直线 上,小明从点 出发,沿公路 向西走了若干米后到达点 处,然后转身沿射线 方向走到点 处,接着又改变方向沿射线 方向走到公路 上的点 处,最后沿公路 回到点 处.设 米(其中 , 米,已知 与 之间的函数关系如图②所示,
(1)求图②中线段 所在直线的函数表达式;
(2)试问小明从起点 出发直至最后回到点 处,所走过的路径(即 是否可以是一个等腰三角形?如果可以,求出相应 的值;如果不可以,说明理由.
在数学兴趣小组活动中,小亮进行数学探究活动. 是边长为2的等边三角形, 是 上一点,小亮以 为边向 的右侧作等边三角形 ,连接 .
(1)如图1,当点 在线段 上时, 、 相交于点 ,小亮发现有两个三角形全等,请你找出来,并证明.
(2)当点 在线段 上运动时,点 也随着运动,若四边形 的面积为 ,求 的长.
(3)如图2,当点 在 的延长线上运动时, 、 相交于点 ,请你探求 的面积 与 的面积 之间的数量关系.并说明理由.
(4)如图2,当 的面积 时,求 的长.
如图,已知 为锐角 内部一点,过点 作 于点 , 于点 ,以 为直径作 ,交直线 于点 ,连接 , , 交 于点 .
(1)求证: .
(2)连接 , ,当 , 时,在点 的整个运动过程中.
①若 ,求 的长.
②若 为等腰三角形,求所有满足条件的 的长.
(3)连接 , , 交 于点 ,当 , 时,记 的面积为 , 的面积为 ,请写出 的值.
如图, 是 的内接三角形,点 在 上,点 在弦 上 不与 重合),且四边形 为菱形.
(1)求证: ;
(2)求证: ;
(3)已知 的半径为3.
①若 ,求 的长;
②当 为何值时, 的值最大?
如图1,直线 与 轴交于点 ,与 轴交于点 ,点 是线段 上一动点 .以点 为圆心, 长为半径作 交 轴于另一点 ,交线段 于点 ,连接 并延长交 于点 .
(1)求直线 的函数表达式和 的值;
(2)如图2,连接 ,当 时,
①求证: ;
②求点 的坐标;
(3)当点 在线段 上运动时,求 的最大值.