初中数学

已知:如图,在菱形 ABCD 中,点 E F 分别在边 BC CD 上, BE = FD AF 的延长线交 BC 的延长线于点 H AE 的延长线交 DC 的延长线于点 G

[小题1]求证: ΔAFD ΔGAD

[小题2]如果 D F 2 = CF · CD ,求证: BE = CH

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在直角梯形 ABCD 中, AB / / DC DAB = 90 ° AB = 8 CD = 5 BC = 3 5

(1)求梯形 ABCD 的面积;

(2)联结 BD ,求 DBC 的正切值.

[小题1]求梯形 ABCD 的面积;

[小题2]联结 BD ,求 DBC 的正切值.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线 y = 1 4 x 2 - x - 3 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .直线 l 与抛物线交于 A D 两点,与 y 轴交于点 E ,点 D 的坐标为 ( 4 , - 3 )

(1)请直接写出 A B 两点的坐标及直线 l 的函数表达式;

(2)若点 P 是抛物线上的点,点 P 的横坐标为 m ( m 0 ) ,过点 P PM x 轴,垂足为 M PM 与直线 l 交于点 N ,当点 N 是线段 PM 的三等分点时,求点 P 的坐标;

(3)若点 Q y 轴上的点,且 ADQ = 45 ° ,求点 Q 的坐标.

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积 S 1 S 2 S 3 之间的关系问题”进行了以下探究:

类比探究

(1)如图2,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为斜边向外侧作 Rt Δ ABD Rt Δ ACE Rt Δ BCF ,若 1 = 2 = 3 ,则面积 S 1 S 2 S 3 之间的关系式为      

推广验证

(2)如图3,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为边向外侧作任意 ΔABD ΔACE ΔBCF ,满足 1 = 2 = 3 D = E = F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;

拓展应用

(3)如图4,在五边形 ABCDE 中, A = E = C = 105 ° ABC = 90 ° AB = 2 3 DE = 2 ,点 P AE 上, ABP = 30 ° PE = 2 ,求五边形 ABCDE 的面积.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 3 x 的图象经过 O ( 0 , 0 ) A ( 4 , 4 ) B ( 3 , 0 ) 三点,以点 O 为位似中心,在 y 轴的右侧将 ΔOAB 按相似比 2 : 1 放大,得到△ OA ' B ' ,二次函数 y = a x 2 + bx + c ( a 0 ) 的图象经过 O A ' B ' 三点.

(1)画出△ OA ' B ' ,试求二次函数 y = a x 2 + bx + c ( a 0 ) 的表达式;

(2)点 P ( m , n ) 在二次函数 y = x 2 3 x 的图象上, m 0 ,直线 OP 与二次函数 y = a x 2 + bx + c ( a 0 ) 的图象交于点 Q (异于点 O )

①求点 Q 的坐标(横、纵坐标均用含 m 的代数式表示)

②连接 AP ,若 2 AP > OQ ,求 m 的取值范围;

③当点 Q 在第一象限内,过点 Q QQ ' 平行于 x 轴,与二次函数 y = a x 2 + bx + c ( a 0 ) 的图象交于另一点 Q ' ,与二次函数 y = x 2 3 x 的图象交于点 M N ( M N 的左侧),直线 OQ ' 与二次函数 y = x 2 3 x 的图象交于点 P ' .△ Q ' P ' M QB ' N ,则线段 NQ 的长度等于 

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图1,四边形 OABC 是矩形,点 A 的坐标为 ( 3 , 0 ) ,点 C 的坐标为 ( 0 , 6 ) ,点 P 从点 O 出发,沿 OA 以每秒1个单位长度的速度向点 A 运动,同时点 Q 从点 A 出发,沿 AB 以每秒2个单位长度的速度向点 B 运动,当点 P 与点 A 重合时运动停止.设运动时间为 t 秒.

(1)当 t = 2 时,线段 PQ 的中点坐标为  

(2)当 ΔCBQ ΔPAQ 相似时,求 t 的值;

(3)当 t = 1 时,抛物线 y = x 2 + bx + c 经过 P Q 两点,与 y 轴交于点 M ,抛物线的顶点为 K ,如图2所示,问该抛物线上是否存在点 D ,使 MQD = 1 2 MKQ ?若存在,求出所有满足条件的 D 的坐标;若不存在,说明理由.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,将等腰直角三角形纸片 ABC 对折,折痕为 CD .展平后,再将点 B 折叠在边 AC 上(不与 A C 重合),折痕为 EF ,点 B AC 上的对应点为 M ,设 CD EM 交于点 P ,连接 PF .已知 BC = 4

(1)若 M AC 的中点,求 CF 的长;

(2)随着点 M 在边 AC 上取不同的位置,

ΔPFM 的形状是否发生变化?请说明理由;

②求 ΔPFM 的周长的取值范围.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知:如图,一次函数 y = kx 1 的图象经过点 A ( 3 5 m ) ( m > 0 ) ,与 y 轴交于点 B .点 C 在线段 AB 上,且 BC = 2 AC ,过点 C x 轴的垂线,垂足为点 D .若 AC = CD

(1)求这个一次函数的表达式;

(2)已知一开口向下、以直线 CD 为对称轴的抛物线经过点 A ,它的顶点为 P ,若过点 P 且垂直于 AP 的直线与 x 轴的交点为 Q ( 4 5 5 0 ) ,求这条抛物线的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在边长为1的正方形 ABCD 中,动点 E F 分别在边 AB CD 上,将正方形 ABCD 沿直线 EF 折叠,使点 B 的对应点 M 始终落在边 AD 上(点 M 不与点 A D 重合),点 C 落在点 N 处, MN CD 交于点 P ,设 BE = x

(1)当 AM = 1 3 时,求 x 的值;

(2)随着点 M 在边 AD 上位置的变化, ΔPDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;

(3)设四边形 BEFC 的面积为 S ,求 S x 之间的函数表达式,并求出 S 的最小值.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图①,直线 l 表示一条东西走向的笔直公路,四边形 ABCD 是一块边长为100米的正方形草地,点 A D 在直线 l 上,小明从点 A 出发,沿公路 l 向西走了若干米后到达点 E 处,然后转身沿射线 EB 方向走到点 F 处,接着又改变方向沿射线 FC 方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设 AE = x 米(其中 x > 0 ) GA = y 米,已知 y x 之间的函数关系如图②所示,

(1)求图②中线段 MN 所在直线的函数表达式;

(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即 ΔEFG ) 是否可以是一个等腰三角形?如果可以,求出相应 x 的值;如果不可以,说明理由.

来源:2018年江苏省苏州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动. ΔABC 是边长为2的等边三角形, E AC 上一点,小亮以 BE 为边向 BE 的右侧作等边三角形 BEF ,连接 CF

(1)如图1,当点 E 在线段 AC 上时, EF BC 相交于点 D ,小亮发现有两个三角形全等,请你找出来,并证明.

(2)当点 E 在线段 AC 上运动时,点 F 也随着运动,若四边形 ABFC 的面积为 7 4 3 ,求 AE 的长.

(3)如图2,当点 E AC 的延长线上运动时, CF BE 相交于点 D ,请你探求 ΔECD 的面积 S 1 ΔDBF 的面积 S 2 之间的数量关系.并说明理由.

(4)如图2,当 ΔECD 的面积 S 1 = 3 6 时,求 AE 的长.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 P 为锐角 MAN 内部一点,过点 P PB AM 于点 B PC AN 于点 C ,以 PB 为直径作 O ,交直线 CP 于点 D ,连接 AP BD AP O 于点 E

(1)求证: BPD = BAC

(2)连接 EB ED ,当 tan MAN = 2 AB = 2 5 时,在点 P 的整个运动过程中.

①若 BDE = 45 ° ,求 PD 的长.

②若 ΔBED 为等腰三角形,求所有满足条件的 BD 的长.

(3)连接 OC EC OC AP 于点 F ,当 tan MAN = 1 OC / / BE 时,记 ΔOFP 的面积为 S 1 ΔCFE 的面积为 S 2 ,请写出 S 1 S 2 的值.

来源:2018年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形,点 D BC ̂ 上,点 E 在弦 AB ( E 不与 A 重合),且四边形 BDCE 为菱形.

(1)求证: AC = CE

(2)求证: B C 2 A C 2 = AB · AC

(3)已知 O 的半径为3.

①若 AB AC = 5 3 ,求 BC 的长;

②当 AB AC 为何值时, AB · AC 的值最大?

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,直线 l : y = 3 4 x + b x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,点 C 是线段 OA 上一动点 ( 0 < AC < 16 5 ) .以点 A 为圆心, AC 长为半径作 A x 轴于另一点 D ,交线段 AB 于点 E ,连接 OE 并延长交 A 于点 F

(1)求直线 l 的函数表达式和 tan BAO 的值;

(2)如图2,连接 CE ,当 CE = EF 时,

①求证: ΔOCE ΔOEA

②求点 E 的坐标;

(3)当点 C 在线段 OA 上运动时,求 OE EF 的最大值.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° AC = 12 .点 D 在直线 CB 上,以 CA CD 为边作矩形 ACDE ,直线 AB 与直线 CE DE 的交点分别为 F G

(1)如图,点 D 在线段 CB 上,四边形 ACDE 是正方形.

①若点 G DE 的中点,求 FG 的长.

②若 DG = GF ,求 BC 的长.

(2)已知 BC = 9 ,是否存在点 D ,使得 ΔDFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题