初中数学

如图,的直径,两点在的延长线上,上的点,且,延长,使得,设

(1)求证:

(2)求的长;

(3)若点三点确定的圆上,求的长.

来源:2019年云南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图1,在矩形中,边上一点.将沿翻折得到△的延长线交边于点,过点于点

(1)求证:

(2)请判断四边形的形状,并说明理由;

(3)如图2,连接,分别交于点.若,求的值.

来源:2018年云南省昆明市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知的直径,的切线,上的点,是直径上的动点,与直线上的点连线距离的最小值为与直线上的点连线距离的最小值为

(1)求证:的切线;

(2)设,求的正弦值;

(3)设,求的取值范围.

来源:2017年云南省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,已知的半径长为1,的两条弦,且的延长线交于点,联结

(1)求证:

(2)当是直角三角形时,求两点的距离;

(3)记 的面积分别为,如果的比例中项,求的长.

来源:2017年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图所示,梯形 ABCD 中, AB / / DC B = 90 ° AD = 15 AB = 16 BC = 12 ,点 E 是边 AB 上的动点,点 F 是射线 CD 上一点,射线 ED 和射线 AF 交于点 G ,且 AGE = DAB

(1)求线段 CD 的长;

(2)如果 ΔAEG 是以 EG 为腰的等腰三角形,求线段 AE 的长;

(3)如果点 F 在边 CD 上(不与点 C D 重合),设 AE = x DF = y ,求 y 关于 x 的函数解析式,并写出 x 的取值范围.

来源:2016年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,是等边三角形,,若点的内心,则的长为  

问题探究

(2)如图②,在矩形中,,如果点边上一点,且,那么边上是否存在一点,使得线段将矩形的面积平分?若存在,求出的长;若不存在,请说明理由.

问题解决

(3)某城市街角有一草坪,草坪是由草地和弦与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于(即每次喷灌时喷灌龙头由转到,然后再转回,这样往复喷灌.同时,再合理设计好喷灌龙头喷水的射程就可以了.

如图③,已测出的面积为;过弦的中点于点,又测得

请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)

来源:2017年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,抛物线轴于两点,交轴于点.直线经过点

(1)求抛物线的解析式;

(2)点是抛物线上一动点,过点轴的垂线,交直线于点,设点的横坐标为

①当是直角三角形时,求点的坐标;

②作点关于点的对称点,则平面内存在直线,使点到该直线的距离都相等.当点轴右侧的抛物线上,且与点不重合时,请直接写出直线的解析式.可用含的式子表示)

来源:2019年河南省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,抛物线轴于两点,交轴于点,顶点的坐标为,对称轴交轴于点,直线轴于点,交轴于点,交抛物线的对称轴于点

(1)求出的值.

(2)点为抛物线对称轴上一个动点,若是以为腰的等腰三角形时,请求出点的坐标.

(3)点为抛物线上一个动点,当点关于直线的对称点恰好落在轴上时,请直接写出此时点的坐标.

来源:2018年河南省中考数学试卷(备用卷)
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,直线轴交于点,与轴交于点,抛物线经过点

(1)求点的坐标和抛物线的解析式;

(2)轴上一动点,过点且垂直于轴的直线与直线及抛物线分别交于点

①点在线段上运动,若以为顶点的三角形与相似,求点的坐标;

②点轴上自由运动,若三个点中恰有一点是其它两点所连线段的中点(三点重合除外),则称三点为“共谐点”.请直接写出使得三点成为“共谐点”的的值.

来源:2017年河南省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,有抛物线.抛物线经过原点,与轴正半轴交于点,与其对称轴交于点是抛物线上一点,且在轴上方,过点轴的垂线交抛物线于点,过点的垂线交抛物线于点(不与点重合),连结,设点的横坐标为

(1)求的值;

(2)当抛物线经过原点时,设重叠部分图形的周长为

①求的值;

②求之间的函数关系式;

(3)当为何值时,存在点,使以点为顶点的四边形是轴对称图形?直接写出的值.

来源:2016年吉林省长春市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图1和图2,在中,.点边上,点分别在上,且.点从点出发沿折线匀速移动,到达点时停止;而点边上随移动,且始终保持

(1)当点上时,求点与点的最短距离;

(2)若点上,且的面积分成上下两部分时,求的长;

(3)设点移动的路程为,当时,分别求点到直线的距离(用含的式子表示);

(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点再到共用时36秒.若,请直接写出点被扫描到的总时长.

来源:2020年河北省中考数学试卷
  • 更新:2021-01-05
  • 题型:未知
  • 难度:未知

如图,中,内部一点,且

(1)求证:

(2)求证:

(3)若点到三角形的边的距离分别为,求证

来源:2019年安徽省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

已知正方形,点为边的中点.

(1)如图1,点为线段上的一点,且,延长分别与边交于点

①求证:

②求证:

(2)如图2,在边上取一点,满足,连接于点,连接并延长交于点,求的值.

来源:2017年安徽省中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

如图1,分别在射线上,且为钝角,现以线段为斜边向的外侧作等腰直角三角形,分别是,点分别是的中点.

(1)求证:

(2)延长交于点

①如图2,若,求证:为等边三角形;

②如图3,若,求大小和的值.

来源:2016年安徽省中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).

(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;
(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得SAEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题