如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.
(1)求证:ΔOAD∽ΔABD;
(2)当ΔOCD是直角三角形时,求B、C两点的距离;
(3)记ΔAOB、ΔAOD、ΔCOD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.
已知直线(<0)分别交轴、轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作轴的垂线交直线AB于点C,设运动时间为秒. (1)当时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1). ①直接写出=1秒时C、Q两点的坐标; ②若以Q、C、A为顶点的三角形与△AOB相似,求的值. (2)当时,设以C为顶点的抛物线与直线AB的另一交点为D (如图2),①求CD的长; ②设△COD的OC边上的高为,当为何值时,的值最大?
已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r. (1)如图1,当点E在直径AB上时,试证明:OE·OP=r2 (2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
某玩具厂授权生产工艺品福娃,每日最高产量为30只,且每日生产的产品全部出售.已知生产只福娃的成本为(元),每只售价(元),且,与的表达式分别为,.当日产量为多少时,可获得最大利润?最大利润是多少?
(本题满分10分) 已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(),点B的坐标为(-6,0). (1)若△OAB关于y轴的轴对称图形是三角形O,请直接写出A、B的对称点的坐标; (2)若将△沿x轴向右平移a个单位,此时点A恰好落在反比例函数的图像上,求a的值.
(本题满分8分) 某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示,某卡车空车时能通过此隧道,现装载一集装箱箱宽3,车与箱共高4.5,此车能否通过此隧道?