初中数学

如图,抛物线 y = 1 2 x 2 + 3 2 x + 2 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C

(1)试探究 ΔABC 的外接圆的圆心位置,求出圆心坐标;

(2)点 P 是抛物线上一点(不与点 A 重合),且 S ΔPBC = S ΔABC ,求 APB 的度数;

(3)在(2)的条件下,点 E x 轴上方抛物线上一点,点 F 是抛物线对称轴上一点,是否存在这样的点 E 和点 F ,使得以点 B P E F 为顶点的四边形是平行四边形?若存在,请直接写出点 F 的坐标;若不存在,请说明理由.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx + c 过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 AC BC ,将 ΔOBC 沿 BC 所在的直线翻折,得到 ΔDBC ,连接 OD

(1)用含 a 的代数式表示点 C 的坐标.

(2)如图1,若点 D 落在抛物线的对称轴上,且在 x 轴上方,求抛物线的解析式.

(3)设 ΔOBD 的面积为 S 1 ΔOAC 的面积为 S 2 ,若 S 1 S 2 = 2 3 ,求 a 的值.

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 90 ° AB = 3 AC = 4 ,点 M Q 分别是边 AB BC 上的动点(点 M 不与 A B 重合),且 MQ BC ,过点 M BC 的平行线 MN ,交 AC 于点 N ,连接 NQ ,设 BQ x

(1)试说明不论 x 为何值时,总有 ΔQBM ΔABC

(2)是否存在一点 Q ,使得四边形 BMNQ 为平行四边形,试说明理由;

(3)当 x 为何值时,四边形 BMNQ 的面积最大,并求出最大值.

来源:2019年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, AB = 3 AD = 4 ,动点 Q 从点 A 出发,以每秒1个单位的速度,沿 AB 向点 B 移动;同时点 P 从点 B 出发,仍以每秒1个单位的速度,沿 BC 向点 C 移动,连接 QP QD PD .若两个点同时运动的时间为 x ( 0 < x 3 ) ,解答下列问题:

(1)设 ΔQPD 的面积为 S ,用含 x 的函数关系式表示 S ;当 x 为何值时, S 有最大值?并求出最小值;

(2)是否存在 x 的值,使得 QP DP ?试说明理由.

来源:2016年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD 的边长为4,点 P AB 边上的一个动点,连接 CP ,过点 P PC 的垂线交 AD 于点 E ,以 PE 为边作正方形 PEFG ,顶点 G 在线段 PC 上,对角线 EG PF 相交于点 O

(1)若 AP = 1 ,则 AE =        

(2)①求证:点 O 一定在 ΔAPE 的外接圆上;

②当点 P 从点 A 运动到点 B 时,点 O 也随之运动,求点 O 经过的路径长;

(3)在点 P 从点 A 到点 B 的运动过程中, ΔAPE 的外接圆的圆心也随之运动,求该圆心到 AB 边的距离的最大值.

来源:2017年江苏省扬州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = 4 9 x 2 - 4 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C C 的半径为 5 P C 上一动点.

(1)点 B C 的坐标分别为 B (        ) C (       )

(2)是否存在点 P ,使得 ΔPBC 为直角三角形?若存在,求出点 P 的坐标;若不存在,请说明理由;

(3)连接 PB ,若 E PB 的中点,连接 OE ,则 OE 的最大值 =       

来源:2017年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知矩形 ABCD 中, AB = 4 AD = m ,动点 P 从点 D 出发,在边 DA 上以每秒1个单位的速度向点 A 运动,连接 CP ,作点 D 关于直线 PC 的对称点 E ,设点 P 的运动时间为 t ( s )

(1)若 m = 6 ,求当 P E B 三点在同一直线上时对应的 t 的值.

(2)已知 m 满足:在动点 P 从点 D 到点 A 的整个运动过程中,有且只有一个时刻 t ,使点 E 到直线 BC 的距离等于3,求所有这样的 m 的取值范围.

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知 A ( 1 , 4 ) B ( 4 , 1 ) C ( m , 0 ) D ( 0 , n )

(1)四边形 ABCD 的周长的最小值为      ,此时四边形 ABCD 的形状为      

(2)在(1)的情况下, P AB 的中点, E AD 上一动点,连接 PE ,作 PF PE 交四边形的边于点 F ,在点 E D 运动到 A 的过程中:

①求 tan PEF 的值;

②若 EF 的中点为 Q ,在整个运动过程中,请直接写出点 Q 所经过的路线长.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知 A ( 1 , 4 ) B ( 4 , 1 ) C ( m , 0 ) D ( 0 , n )

(1)四边形 ABCD 的周长的最小值为      ,此时四边形 ABCD 的形状为      

(2)在(1)的情况下, P AB 的中点, E AD 上一动点,连接 PE ,作 PF PE 交四边形的边于点 F ,在点 E D 运动到 A 的过程中:

①求 tan PEF 的值;

②若 EF 的中点为 Q ,在整个运动过程中,请直接写出点 Q 所经过的路线长.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中,已知 AB = 1 BC = 3 ,点 E 在边 CD 上移动,连接 AE ,将多边形 ABCE 沿直线 AE 翻折,得到多边形 AB ' C ' E ,点 B C 的对应点分别为点 B ' C '

(1)当 B ' C ' 恰好经过点 D 时(如图 1 ),求线段 CE 的长;

(2)若 B ' C ' 分别交边 AD CD 于点 F G ,且 DAE = 22 . 5 ° (如图 2 ) ,求 ΔDFG 的面积;

(3)在点 E 从点 C 移动到点 D 的过程中,求点 C ' 运动的路径长.

来源:2017年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知一次函数 y = - 4 3 x + 4 的图象是直线 l ,设直线 l 分别与 y 轴、 x 轴交于点 A B

(1)求线段 AB 的长度;

(2)设点 M 在射线 AB 上,将点 M 绕点 A 按逆时针方向旋转 90 ° 到点 N ,以点 N 为圆心, NA 的长为半径作 N

①当 N x 轴相切时,求点 M 的坐标;

②在①的条件下,设直线 AN x 轴交于点 C ,与 N 的另一个交点为 D ,连接 MD x 轴于点 E ,直线 m 过点 N 分别与 y 轴、直线 l 交于点 P Q ,当 ΔAPQ ΔCDE 相似时,求点 P 的坐标.

来源:2017年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 1 2 x 2 3 2 x n ( n > 0 ) x 轴交于 A B 两点 ( A 点在 B 点的左边),与 y 轴交于点 C

(1)如图1,若 ΔABC 为直角三角形,求 n 的值;

(2)如图1,在(1)的条件下,点 P 在抛物线上,点 Q 在抛物线的对称轴上,若以 BC 为边,以点 B C P Q 为顶点的四边形是平行四边形,求 P 点的坐标;

(3)如图2,过点 A 作直线 BC 的平行线交抛物线于另一点 D ,交 y 轴于点 E ,若 AE : ED = 1 : 4 ,求 n 的值.

来源:2018年湖南省益阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, AD > AB ,点 P CD 边上的任意一点(不含 C D 两端点),过点 P PF / / BC ,交对角线 BD 于点 F

(1)如图1,将 ΔPDF 沿对角线 BD 翻折得到 ΔQDF QF AD 于点 E

求证: ΔDEF 是等腰三角形;

(2)如图2,将 ΔPDF 绕点 D 逆时针方向旋转得到△ P ' D F ' ,连接 P ' C F ' B .设旋转角为 α ( 0 ° < α < 180 ° )

①若 0 ° < α < BDC ,即 D F ' BDC 的内部时,求证:△ D P ' C D F ' B

②如图3,若点 P CD 的中点,△ D F ' B 能否为直角三角形?如果能,试求出此时 tan DB F ' 的值,如果不能,请说明理由.

来源:2018年湖南省郴州市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

已知正方形 ABCD AC BD 交于 O 点,点 M 在线段 BD 上,作直线 AM 交直线 DC E ,过 D DH AE H ,设直线 DH AC N

(1)如图1,当 M 在线段 BO 上时,求证: MO = NO

(2)如图2,当 M 在线段 OD 上,连接 NE ,当 EN / / BD 时,求证: BM = AB

(3)在图3,当 M 在线段 OD 上,连接 NE ,当 NE EC 时,求证: A N 2 = NC AC

来源:2018年湖南省常德市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 + bx + c + 1

①当 b = 1 时,求这个二次函数的对称轴的方程;

②若 c = 1 4 b 2 2 b ,问: b 为何值时,二次函数的图象与 x 轴相切?

③若二次函数的图象与 x 轴交于点 A ( x 1 0 ) B ( x 2 0 ) ,且 x 1 < x 2 b > 0 ,与 y 轴的正半轴交于点 M ,以 AB 为直径的半圆恰好过点 M ,二次函数的对称轴 l x 轴、直线 BM 、直线 AM 分别交于点 D E F ,且满足 DE EF = 1 3 ,求二次函数的表达式.

来源:2017年湖南省株洲市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题