在矩形 ABCD 中, AD > AB ,点 P 是 CD 边上的任意一点(不含 C , D 两端点),过点 P 作 PF / / BC ,交对角线 BD 于点 F .
(1)如图1,将 ΔPDF 沿对角线 BD 翻折得到 ΔQDF , QF 交 AD 于点 E .
求证: ΔDEF 是等腰三角形;
(2)如图2,将 ΔPDF 绕点 D 逆时针方向旋转得到△ P ' D F ' ,连接 P ' C , F ' B .设旋转角为 α ( 0 ° < α < 180 ° ) .
①若 0 ° < α < ∠ BDC ,即 D F ' 在 ∠ BDC 的内部时,求证:△ D P ' C ∽ △ D F ' B .
②如图3,若点 P 是 CD 的中点,△ D F ' B 能否为直角三角形?如果能,试求出此时 tan ∠ DB F ' 的值,如果不能,请说明理由.
已知y与x2成正比例,并且当x=1时,y=2,求函数y与x的函数关系式,并求当x=-3时,y的值.当y=8时,求x的值.
如图,在平面镜的同侧,有相隔15cm的A、B两点,它们与平面镜的距离分别为5cm和7cm,现要使由A点射出的光线经平面镜反射后通过点B,求光线的入射角θ的度数.
如图,一勘测人员从B点出发,沿坡角为15°的坡面以5千米/时的速度行至D处,用了12分钟,然后沿坡角为20°的坡面以3千米/时的速度到达山顶A点处,用了10 分钟,求山高(即AC的长度)及A、B两点间的水平距离(即BC的长)(精确到0.01千米).
身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的):
问:三人所放风筝中,谁的最高?谁的最低?
河堤横断面如图所示,堤高BC=5米,迎水坡AB的长为8米,求斜坡AB与水平面所夹的锐角度数.