在矩形 ABCD 中, AD > AB ,点 P 是 CD 边上的任意一点(不含 C , D 两端点),过点 P 作 PF / / BC ,交对角线 BD 于点 F .
(1)如图1,将 ΔPDF 沿对角线 BD 翻折得到 ΔQDF , QF 交 AD 于点 E .
求证: ΔDEF 是等腰三角形;
(2)如图2,将 ΔPDF 绕点 D 逆时针方向旋转得到△ P ' D F ' ,连接 P ' C , F ' B .设旋转角为 α ( 0 ° < α < 180 ° ) .
①若 0 ° < α < ∠ BDC ,即 D F ' 在 ∠ BDC 的内部时,求证:△ D P ' C ∽ △ D F ' B .
②如图3,若点 P 是 CD 的中点,△ D F ' B 能否为直角三角形?如果能,试求出此时 tan ∠ DB F ' 的值,如果不能,请说明理由.
在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
如图,在一次夏令营活动中,小明从营地出发,沿北偏东60°方向走了m到达点,然后再沿北偏西方向走了到达目的地点.求: (1)两地之间的距离; (2)确定目的地C在营地的什么方向.
如图,防洪大堤的横断面是梯形,背水坡的坡比(指坡面的铅直高度与水平宽度的比),且.身高为的小明站在大堤点,测得高压电线杆端点的仰角为.已知地面宽,求高压电线杆的高度(结果保留三个有效数字,1.732).
如图,在梯形中,∥,过对角线的中点作,分别交边于点,连接. (1)求证:四边形是菱形; (2)若,,求四边形的面积.
已知线段,为的中点,为上一点,连接交于点. (1)如图①,当且为的中点时,求的值; (2)如图②,当,=时,求tan∠.