在矩形 ABCD 中, AD > AB ,点 P 是 CD 边上的任意一点(不含 C , D 两端点),过点 P 作 PF / / BC ,交对角线 BD 于点 F .
(1)如图1,将 ΔPDF 沿对角线 BD 翻折得到 ΔQDF , QF 交 AD 于点 E .
求证: ΔDEF 是等腰三角形;
(2)如图2,将 ΔPDF 绕点 D 逆时针方向旋转得到△ P ' D F ' ,连接 P ' C , F ' B .设旋转角为 α ( 0 ° < α < 180 ° ) .
①若 0 ° < α < ∠ BDC ,即 D F ' 在 ∠ BDC 的内部时,求证:△ D P ' C ∽ △ D F ' B .
②如图3,若点 P 是 CD 的中点,△ D F ' B 能否为直角三角形?如果能,试求出此时 tan ∠ DB F ' 的值,如果不能,请说明理由.
某家电商场计划用32 400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售价如下表:
(1)在不超出现有资金的前提下,若购进电视机和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案? (2)国家规定,农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家最多需补贴农民多少元?
学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车,若租用1辆大车2辆小车共需租车费1 000元;若租用2辆大车1辆小车共需租车费1 100元. (1)求大、小车每辆的租车费各是多少元? (2)若每辆车上至少要有一名教师,且总租车费用不超过2 300元,求最省钱的租车方案.
为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人,求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?
由方程组得到的x、y的值都不大于1,求a的取值范围.
已知2a-3x+1=0,3b-2x-16=0,且a≤4<b, 求x的取值范围.