如图,已知正方形 ABCD 的边长为4,点 P 是 AB 边上的一个动点,连接 CP ,过点 P 作 PC 的垂线交 AD 于点 E ,以 PE 为边作正方形 PEFG ,顶点 G 在线段 PC 上,对角线 EG 、 PF 相交于点 O .
(1)若 AP = 1 ,则 AE = ;
(2)①求证:点 O 一定在 ΔAPE 的外接圆上;
②当点 P 从点 A 运动到点 B 时,点 O 也随之运动,求点 O 经过的路径长;
(3)在点 P 从点 A 到点 B 的运动过程中, ΔAPE 的外接圆的圆心也随之运动,求该圆心到 AB 边的距离的最大值.
先化简,再求值:,其中,.
解不等式组
因式分解:(4分×2=8分) (1)9x2-16y2(2)
(1)(2)
解方程组: (1)(2)