在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = 12 .点 D 在直线 CB 上,以 CA , CD 为边作矩形 ACDE ,直线 AB 与直线 CE , DE 的交点分别为 F , G .
(1)如图,点 D 在线段 CB 上,四边形 ACDE 是正方形.
①若点 G 为 DE 的中点,求 FG 的长.
②若 DG = GF ,求 BC 的长.
(2)已知 BC = 9 ,是否存在点 D ,使得 ΔDFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
如图(1),在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB. (1)求证:△BCP≌△DCP; (2)求证:∠DPE=∠ABC; (3)把正方形ABCD改为菱形,其他条件不变,如图(2),如果∠ABC=58°,那么∠DPE=________度.
如图,一根长2a的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为点P,若木棍A端沿墙下滑,且B端沿地面向右滑行. (1)试判断木棍滑动过程中,点P到点O的距离是否变化?并简述理由. (2)在木棍滑动过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求面积的最大值.
已知:如图,四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F. (1)求证:△AOE≌△COF; (2)若∠EOD=30°,求CE的长.
如图,已知E,F是四边形ABCD对角线AC上的两点,AE=CF,BE=FD,BE∥FD. 求证:四边形ABCD是平行四边形.
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E. (1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.