如图,一根长2a的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为点P,若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)试判断木棍滑动过程中,点P到点O的距离是否变化?并简述理由.(2)在木棍滑动过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求面积的最大值.
由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图)。请你用两种不同的方法分别在图中再将两个空白的小正方形涂黑,使它成为轴对称图形。
化简求值:,其中
化简:
计算:
探索归纳:(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于 ( )
(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=_______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是________________(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.