已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
计算下列各题:(每小题4分,共12分)(1)-48×(-+-)(2)(3)
暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
甲、乙两人骑自行车分别从相距一定距离的A、B 两地相向而行。假设他们都保持匀速行驶,他们各自到A地的距离s(千米)都是骑车时间t(时)的函数,图象如图所示.根据图像解决下列问题:(1)出发时 在A地,A、B两地相距 千米。(2) 千米/时, 千米/时。(3)分别求出甲、乙在行驶过程中s(千米)与t(时)的函数关系式。
如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米.飞机每小时飞行多少千米?
如图,平行四边形中,,,.对角线 相交于点,将直线绕点顺时针旋转,分别交于点.(1)当旋转角为时,试说明四边形是平行四边形;(2)试说明在旋转过程中,线段与总保持相等;(3)在旋转过程中,四边形可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时绕点顺时针旋转的度数.