如图(1),在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变,如图(2),如果∠ABC=58°,那么∠DPE=________度.
如图,有牌面数字都是2,3,4的两组牌.从毎组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面数字之和为6的概率.
如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2求证:△ABE≌△CDF.
(1)计算:;(2)化简:(a+b)2+b(a﹣b).
如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标;(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作,垂足为H,连接,.设点P的运动时间为秒.①若△MPH与矩形AOCD重合部分的面积为1,求的值;②点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.
在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数 的图象上;平移2次后在函数 的图象上……由此我们知道,平移次后在函数 的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.