如图,抛物线 y = - 1 2 x 2 + 3 2 x + 2 与 x 轴交于点 A , B ,与 y 轴交于点 C .
(1)试求 A , B , C 的坐标;
(2)将 ΔABC 绕 AB 中点 M 旋转 180 ° ,得到 ΔBAD .
①求点 D 的坐标;
②判断四边形 ADBC 的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点 P ,使 ΔBMP 与 ΔBAD 相似?若存在,请直接写出所有满足条件的 P 点的坐标;若不存在,请说明理由.
青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.
(1)请问每个站点的造价和公共自行车的单价分别是多少万元?
(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.
随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.
根据以上信息解答下列问题:
(1)2015年国庆期间,西宁周边景区共接待游客 万人,扇形统计图中“青海湖”所对应的圆心角的度数是 ,并补全条形统计图;
(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?
(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.
如图,一次函数 y = x + m 的图象与反比例函数 y = k x 的图象交于 A , B 两点,且与 x 轴交于点 C ,点 A 的坐标为 ( 2 , 1 ) .
(1)求 m 及 k 的值;
(2)求点 C 的坐标,并结合图象写出不等式组 0 < x + m ⩽ k x 的解集.
化简: 2 x x + 1 - 2 x + 4 x 2 - 1 ÷ x + 2 x 2 - 2 x + 1 ,然后在不等式 x ⩽ 2 的非负整数解中选择一个适当的数代入求值.
计算: 27 + | 1 - 3 | + ( 1 2 ) - 1 - 2016 0 .