如图,在 中, , 于点 , 于点 ,以点 为圆心, 为半径作半圆,交 于点 .
(1)求证: 是 的切线;
(2)若点 是 的中点, ,求图中阴影部分的面积;
(3)在(2)的条件下,点 是 边上的动点,当 取最小值时,直接写出 的长.
如图,已知 是 的直径,点 为圆上一点,点 为 延长线上一点, , .
(1)求证: 是 的切线.
(2)若 的直径为8,求阴影部分的面积.
如图,在 中, , 的平分线交 于点 ,点 在 上,以点 为圆心, 为半径的圆恰好经过点 ,分别交 , 于点 , .
(1)试判断直线 与 的位置关系,并说明理由;
(2)若 , ,求阴影部分的面积(结果保留 .
如图,在边长为1的正方形网格中, 的顶点均在格点上,点 、 的坐标分别是 、 ,把 绕点 逆时针旋转 后得到△ .
(1)画出△ ,直接写出点 、 的坐标;
(2)求在旋转过程中, 所扫过的面积.
如图, 是 的直径, 为 上一点 不与点 , 重合)连接 , ,过点 作 ,垂足为点 .将 沿 翻折,点 落在点 处得 , 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分面积.
如图,在 中, , 是 的角平分线, 平分 交 于点 .点 在 边上,以点 为圆心的 经过 、 两点,交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分的面积.
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为 、 、 (正方形网格中每个小正方形的边长是1个单位长度).
(1)△A1B1C1是△ABC绕点 逆时针旋转 度得到的,B1的坐标是 ;
(2)求出线段AC旋转过程中所扫过的面积(结果保留π).
在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ ABC的三个顶点均在格点上,以点 A为圆心的 与 BC相切于点 D,分别交 AB、 AC于点 E、 F.
(1)求△ ABC三边的长;
(2)求图中由线段 EB、 BC、 CF及 所围成的阴影部分的面积.
如图, AB为⊙ O的直径, C、 D是半圆 AB的三等分点,过点 C作 AD延长线的垂线 CE,垂足为 E.
(1)求证: CE是⊙ O的切线;
(2)若⊙ O的半径为2,求图中阴影部分的面积.
如图, 是 的直径, 是 的切线,切点为 , 交 于点 ,点 是 的中点.
(1)试判断直线 与 的位置关系,并说明理由;
(2)若 的半径为2, , ,求图中阴影部分的面积.
如图,四边形 是矩形 ,要在矩形 内作一个以 为边的正方形 ,某位同学的作法如下:
①作 的平分线 . 交 于点 ;
②以点 为圆心, 长为半径画弧,交 于点 ,连接 .
(1)求证:四边形 是正方形;
(2)若 ,求图中阴影部分的面积.
如图,在Rt△ ABC中,∠ C=90°, AD平分∠ BAC,交 BC于点 D,点 O在 AB上,⊙ O经过 A、 D两点,交 AC于点 E,交 AB于点 F.
(1)求证: BC是⊙ O的切线;
(2)若⊙ O的半径是2 cm, E是 的中点,求阴影部分的面积.(结果保留π和根号)
如图,在△ABC中, ,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若 , ,求阴影部分的面积(结果保留π).
如图,在平行四边形 中, 是对角线, ,以点 为圆心,以 的长为半径作 ,交 边于点 ,交 于点 ,连接 .
(1)求证: 与 相切;
(2)若 , ,求阴影部分的面积.