初中数学

如图1,四边形 ABCD 内接于 O AD 为直径,点 C CE AB 于点 E ,连接 AC

(1)求证: CAD = ECB

(2)若 CE O 的切线, CAD = 30 ° ,连接 OC ,如图2.

①请判断四边形 ABCO 的形状,并说明理由;

②当 AB = 2 时,求 AD AC CD ̂ 围成阴影部分的面积.

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.

(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为   ,其内切圆的半径长为   

(2)①如图1, P 是边长为 a 的正 ΔABC 内任意一点,点 O ΔABC 的中心,设点 P ΔABC 各边距离分别为 h 1 h 2 h 3 ,连接 AP BP CP ,由等面积法,易知 1 2 a ( h 1 + h 2 + h 3 ) = S ΔABC = 3 S ΔOAB ,可得 h 1 + h 2 + h 3 =   ;(结果用含 a 的式子表示)

②如图2, P 是边长为 a 的正五边形 ABCDE 内任意一点,设点 P 到五边形 ABCDE 各边距离分别为 h 1 h 2 h 3 h 4 h 5 ,参照①的探索过程,试用含 a 的式子表示 h 1 + h 2 + h 3 + h 4 + h 5 的值.(参考数据: tan 36 ° 8 11 tan 54 ° 11 8 )

(3)①如图3,已知 O 的半径为2,点 A O 外一点, OA = 4 AB O 于点 B ,弦 BC / / OA ,连接 AC ,则图中阴影部分的面积为   ;(结果保留 π )

②如图4,现有六边形花坛 ABCDEF ,由于修路等原因需将花坛进行改造,若要将花坛形状改造成五边形 ABCDG ,其中点 G AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点 G 的位置,并说明理由.

来源:2021年湖北省随州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图, PA PB O 的切线, A B 是切点, AC O 的直径,连接 OP ,交 O 于点 D ,交 AB 于点 E

(1)求证: BC / / OP

(2)若 E 恰好是 OD 的中点,且四边形 OAPB 的面积是 16 3 ,求阴影部分的面积;

(3)若 sin BAC = 1 3 ,且 AD = 2 3 ,求切线 PA 的长.

来源:2021年湖北省黄石市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 O 中, AC O 的直径, AB O 的弦,点 E AC ̂ 的中点,过点 E AB 的垂线,交 AB 于点 M ,交 O 于点 N ,分别连接 EB CN

(1) EM BE 的数量关系是   

(2)求证: EB ̂ = CN ̂

(3)若 AM = 3 MB = 1 ,求阴影部分图形的面积.

来源:2021年贵州省贵阳市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

已知平面图形 S ,点 P Q S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.

(1)写出下列图形的宽距:

①半径为1的圆:       

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:     

(2)如图2,在平面直角坐标系中,已知点 A ( - 1 , 0 ) B ( 1 , 0 ) C 是坐标平面内的点,连接 AB BC CA 所形成的图形为 S ,记 S 的宽距为 d

①若 d = 2 ,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);

②若点 C M 上运动, M 的半径为1,圆心 M 在过点 ( 0 , 2 ) 且与 y 轴垂直的直线上.对于 M 上任意点 C ,都有 5 d 8 ,直接写出圆心 M 的横坐标 x 的取值范围.

来源:2019年江苏省常州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学扇形面积的计算解答题