如图,在边长为1的正方形网格中, ΔABC 的顶点均在格点上,点 A 、 B 的坐标分别是 A ( 4 , 3 ) 、 B ( 4 , 1 ) ,把 ΔABC 绕点 C 逆时针旋转 90 ° 后得到△ A 1 B 1 C .
(1)画出△ A 1 B 1 C ,直接写出点 A 1 、 B 1 的坐标;
(2)求在旋转过程中, ΔABC 所扫过的面积.
如图,在Rt△ABC中,∠ACB=90°. (1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹) (2)连接AP,当∠B为度时,AP平分∠CAB.
(1)计算:()-1-4sin45°-(1-)0+; (2)解方程组:.
如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m. (1)求抛物线的解析式; (2)若PE=5EF,求m的值; (3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.
如图,是⊙的直径,点是⊙上一点,与过点的切线垂直,垂足为点,直线与的延长线相交于点,弦平分∠,交于点,连接. (1)求证:平分∠; (2)求证:PC=PF; (3)tanABC=,AB=14,求线段的长.
某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况: (进价、售价均保持不变,利润=销售收入﹣进货成本) (1)求A、B两种型号的电风扇的销售单价; (2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台? (3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.