能够完全重合的平行四边形纸片 和 按图①方式摆放,其中 , .点 , 分别在边 , 上, 与 相交于点 .
【探究】求证:四边形 是菱形.
【操作一】固定图①中的平行四边形纸片 ,将平行四边形纸片 绕着点 顺时针旋转一定的角度,使点 与点 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为 .
【操作二】将图②中的平行四边形纸片 绕着点 继续顺时针旋转一定的角度,使点 与点 重合,连接 , ,如图③,若 ,则四边形 的面积为 .
如图,在中,点、分别在、上,与相交于点,且.
(1)求证:;
(2)连接、,则四边形 (填“是”或“不是” 平行四边形.
如图,在中,,,、分别是、的中点,连接,在直线和直线上分别取点、,连接、.若,且直线与直线互相垂直,则的长为 .
如图,已知抛物线 过点 .
(1)求抛物线的解析式;
(2)已知直线 过点 , , 且与抛物线交于另一点 ,与 轴交于点 ,求证: ;
(3)若点 , 分别是抛物线与直线 上的动点,以 为一边且顶点为 , , , 的四边形是平行四边形,求所有符合条件的 点坐标.
九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质共探究过程如下:
(1)绘制函数图象,如图1.
列表:下表是 与 的几组对应值,其中 ;
|
|
|
|
|
|
|
1 |
2 |
3 |
|
|
|
|
1 |
2 |
4 |
4 |
2 |
|
|
|
描点:根据表中各组对应值 ,在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;
(2)通过观察图1,写出该函数的两条性质;
① ;
② ;
(3)①观察发现:如图2.若直线 交函数 的图象于 , 两点,连接 ,过点 作 交 轴于 .则 ;
②探究思考:将①中"直线 "改为"直线 ",其他条件不变,则 ;
③类比猜想:若直线 交函数 的图象于 , 两点,连接 ,过点 作 交 轴于 ,则 .
如图,在平行四边形中,对角线与交于点,点,分别为、的中点,延长至点,使,连接.
(1)求证:;
(2)若,且,,求四边形的面积.
如图,四边形是矩形,是边上一点,点在的延长线上,且.
(1)求证:四边形是平行四边形;
(2)连接,若,,,求四边形的面积.
如图,在 中, 为斜边 的中线,过点 作 于点 ,延长 至点 ,使 ,连接 , ,点 在线段 上,连接 ,且 , , .下列结论:
① ;
②四边形 是平行四边形;
③ ;
④ .
其中正确结论的个数是
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,在边长为4的正方形中,将沿射线平移,得到,连接、.求的最小值为 .
如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.
(1)求证:四边形为平行四边形;
(2)若,,且,求的长.