如图,在 中,对角线 , , , 为 的中点, 为边 上一点,直线 交 于点 ,连结 , .下列结论不成立的是
A.四边形 为平行四边形
B.若 ,则四边形 为矩形
C.若 ,则四边形 为菱形
D.若 ,则四边形 为正方形
如图,在 中, ,以其三边为边向外作正方形,过点 作 于点 ,再过点 作 分别交边 , 于点 , .若 , ,则 的长为
A.14B.15C. D.
在① ;② ;③ 这三个条件中任选一个补充在下面横线上,并完成证明过程.
已知,如图,四边形 是平行四边形,对角线 、 相交于点 ,点 、 在 上, (填写序号).
求证: .
如图,在四边形 中, , ,垂足分别为点 , .
(1)请你只添加一个条件(不另加辅助线),使得四边形 为平行四边形,你添加的条件是 ;
(2)添加了条件后,证明四边形 为平行四边形.
如图,在 中, ,将 沿直线 翻折得到 ,连接 交 于点 . 是线段 上的点,连接 . 是 的外接圆与 的另一个交点,连接 , .
(1)求证: 是直角三角形;
(2)求证: ;
(3)当 , 时,在线段 上存在点 ,使得 和 互相平分,求 的值.
如图,在 中, , 、 分别为 、 的中点, ,过点 作 ,交 的延长线于点 ,则四边形 的面积为 .
如图,矩形 中, , 相交于点 ,过点 作 交 于点 ,交 于点 ,过点 作 交 于点 ,交 于点 ,连接 , .则下列结论:
① ;
② ;
③ ;
④当 时,四边形 是菱形.
其中,正确结论的个数是
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,点 , 在反比例函数 的图象上, 轴于点 , 轴于点 , 轴于点 ,连结 .若 , , ,则 的值为
A. |
2 |
B. |
|
C. |
|
D. |
|
如图,在 中, , ,点 在 边上,以 , 为边作 ,则 的度数为
A. B. C. D.
如图,点 是 的中点,四边形 是平行四边形.
(1)求证:四边形 是平行四边形;
(2)如果 ,求证:四边形 是矩形.
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,点 为矩形 的对称中心,点 从点 出发沿 向点 运动,移动到点 停止,延长 交 于点 ,则四边形 形状的变化依次为
A.平行四边形 正方形 平行四边形 矩形
B.平行四边形 菱形 平行四边形 矩形
C.平行四边形 正方形 菱形 矩形
D.平行四边形 菱形 正方形 矩形
如图所示,在矩形 中,点 在线段 上,点 在线段 的延长线上,连接 交线段 于点 ,连接 ,若 .
(1)求证:四边形 是平行四边形;
(2)若 ,求线段 的长度.