如图, BD 是半径为3的 ⊙ O 的一条弦, BD = 4 2 ,点 A 是 ⊙ O 上的一个动点(不与点 B , D 重合),以 A , B , D 为顶点作 ▱ ABCD .
(1)如图2,若点 A 是劣弧 BD ^ 的中点.
①求证: ▱ ABCD 是菱形;
②求 ▱ ABCD 的面积.
(2)若点 A 运动到优弧 BD ̂ 上,且 ▱ ABCD 有一边与 ⊙ O 相切.
①求 AB 的长;
②写出 ▱ ABCD 对角线所夹锐角的正切值.
如图1,在 ΔABC 中, AB = AC , N 是 BC 边上的一点, D 为 AN 的中点,过点 A 作 BC 的平行线交 CD 的延长线于 T ,且 AT = BN ,连接 BT .
(1)求证: BN = CN ;
(2)在图1中 AN 上取一点 O ,使 AO = OC ,作 N 关于边 AC 的对称点 M ,连接 MT 、 MO 、 OC 、 OT 、 CM 得图2.
①求证: ΔTOM ∽ ΔAOC ;
②设 TM 与 AC 相交于点 P ,求证: PD / / CM , PD = 1 2 CM .