对给定的一张矩形纸片 进行如下操作:先沿 折叠,使点 落在 边上(如图① ,再沿 折叠,这时发现点 恰好与点 重合(如图②
(1)根据以上操作和发现,求 的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点 与点 重合,折痕与 相交于点 ,再将该矩形纸片展开.求证: ;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 点,要求只有一条折痕,且点 在折痕上,请简要说明折叠方法.(不需说明理由)
将矩形 绕点 顺时针旋转 ,得到矩形 .
(1)如图,当点 在 上时.求证: ;
(2)当 为何值时, ?画出图形,并说明理由.
已知:在四边形 中,对角线 、 相交于点 ,且 ,作 ,垂足为点 , 与 交于点 , .
(1)如图1,求证: ;
(2)如图2, 是 的中线,若 , ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 面积的2倍.
已知 ,求作 ,作法:
(1)以 为圆心,任意长为半径画弧分别交 , 于点 , ;
(2)分别以 , 为圆心,以 长为半径在角的内部画弧交于点 ;
(3)作射线 ,则 为 的平分线,可得
根据以上作法,某同学有以下3种证明思路:
①可证明 ,得 ,可得;
②可证明四边形 为菱形, , 互相垂直平分,得 ,可得;
③可证明 为等边三角形, , 互相垂直平分,从而得 ,可得.
你认为该同学以上3种证明思路中,正确的有
A.①②B.①③C.②③D.①②③
如图,四边形 是边长为6的正方形,点 在边 上, ,过点 作 ,分别交 , 于 , 两点.若 , 分别是 , 的中点,则 的长为
A.3B. C. D.4
定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图1,等腰直角四边形 , , ,
①若 , ,求对角线 的长.
②若 ,求证: ,
(2)如图2,在矩形 中, , ,点 是对角线 上一点,且 ,过点 作直线分别交边 , 于点 , ,使四边形 是等腰直角四边形,求 的长.
如图, 是 的直径, ,四边形 是平行四边形, 交 于点 ,连接 并延长交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求图中阴影部分的面积(结果保留根号和 ).
如图为某城市部分街道示意图,四边形 为正方形,点 在对角线 上, , , ,小敏行走的路线为 ,小聪行走的路线为 .若小敏行走的路程为 ,则小聪行走的路程为 .
已知正方形 的对角线 , 相交于点 .
(1)如图1, , 分别是 , 上的点, 与 的延长线相交于点 .若 ,求证: ;
(2)如图2, 是 上的点,过点 作 ,交线段 于点 ,连接 交 于点 ,交 于点 .若 ,
①求证: ;
②当 时,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
如图, 中, ,以 为直径的 交 于点 , 、 是 上两点,连接 、 、 ,满足 .
(1)求证: 是 的切线;
(2)若 的半径为3, ,求 的长.
如图1,在 中, , ,点 、 分别在 、 边上, ,连接 、 、 ,点 、 、 分别是 、 、 的中点,连接 、 、 .
(1) 与 的数量关系是 ;
(2)将 绕点 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;
(3)若 , ,在将图1中的 绕点 逆时针旋转一周的过程中,当 、 、 三点在一条直线上时, 的长度为 .
如图,将矩形纸片 沿直线 折叠,顶点 恰好与 边上的动点 重合(点 不与点 , 重合),折痕为 ,点 , 分别在边 , 上,连接 , , , 与 相交于点 .
(1)求证: ;
(2)①在图2中,作出经过 , , 三点的 (要求保留作图痕迹,不写做法);
②设 ,随着点 在 上的运动,若①中的 恰好与 , 同时相切,求此时 的长.