初中数学

如图, AC = BC ,请你添加一对边或一对角相等的条件,使 AD = BE .你所添加的条件是  

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

对给定的一张矩形纸片 ABCD 进行如下操作:先沿 CE 折叠,使点 B 落在 CD 边上(如图① ) ,再沿 CH 折叠,这时发现点 E 恰好与点 D 重合(如图② )

(1)根据以上操作和发现,求 CD AD 的值;

(2)将该矩形纸片展开.

①如图③,折叠该矩形纸片,使点 C 与点 H 重合,折痕与 AB 相交于点 P ,再将该矩形纸片展开.求证: HPC = 90 °

②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 P 点,要求只有一条折痕,且点 P 在折痕上,请简要说明折叠方法.(不需说明理由)

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

将矩形 ABCD 绕点 A 顺时针旋转 α ( 0 ° < α < 360 ° ) ,得到矩形 AEFG

(1)如图,当点 E BD 上时.求证: FD = CD

(2)当 α 为何值时, GC = GB ?画出图形,并说明理由.

来源:2018年山东省临沂市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

已知:在四边形 ABCD 中,对角线 AC BD 相交于点 E ,且 AC BD ,作 BF CD ,垂足为点 F BF AC 交于点 G BGE = ADE

(1)如图1,求证: AD = CD

(2)如图2, BH ΔABE 的中线,若 AE = 2 DE DE = EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 ΔADE 面积的2倍.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知 AOB = 45 ° ,求作 AOP = 22 . 5 ° ,作法:

(1)以 O 为圆心,任意长为半径画弧分别交 OA OB 于点 N M

(2)分别以 N M 为圆心,以 OM 长为半径在角的内部画弧交于点 P

(3)作射线 OP ,则 OP AOB 的平分线,可得 AOP = 22 . 5 °

根据以上作法,某同学有以下3种证明思路:

①可证明 ΔOPN ΔOPM ,得 POA = POB ,可得;

②可证明四边形 OMPN 为菱形, OP MN 互相垂直平分,得 POA = POB ,可得;

③可证明 ΔPMN 为等边三角形, OP MN 互相垂直平分,从而得 POA = POB ,可得.

你认为该同学以上3种证明思路中,正确的有 (    )

A.①②B.①③C.②③D.①②③

来源:2018年广西百色市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是边长为6的正方形,点 E 在边 AB 上, BE = 4 ,过点 E EF / / BC ,分别交 BD CD G F 两点.若 M N 分别是 DG CE 的中点,则 MN 的长为 (    )

A.3B. 2 3 C. 13 D.4

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形 ABCD AB = BC ABC = 90 °

①若 AB = CD = 1 AB / / CD ,求对角线 BD 的长.

②若 AC BD ,求证: AD = CD

(2)如图2,在矩形 ABCD 中, AB = 5 BC = 9 ,点 P 是对角线 BD 上一点,且 BP = 2 PD ,过点 P 作直线分别交边 AD BC 于点 E F ,使四边形 ABFE 是等腰直角四边形,求 AE 的长.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, BAC = 90 ° ,四边形 EBOC 是平行四边形, EB O 于点 D ,连接 CD 并延长交 AB 的延长线于点 F

(1)求证: CF O 的切线;

(2)若 F = 30 ° EB = 4 ,求图中阴影部分的面积(结果保留根号和 π ).

来源:2016年云南省昆明市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图为某城市部分街道示意图,四边形 ABCD 为正方形,点 G 在对角线 BD 上, GE CD GF BC AD = 1500 m ,小敏行走的路线为 B A G E ,小聪行走的路线为 B A D E F .若小敏行走的路程为 3100 m ,则小聪行走的路程为   m

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 的对角线 AC BD 相交于点 O

(1)如图1, E G 分别是 OB OC 上的点, CE DG 的延长线相交于点 F .若 DF CE ,求证: OE = OG

(2)如图2, H BC 上的点,过点 H EH BC ,交线段 OB 于点 E ,连接 DH CE 于点 F ,交 OC 于点 G .若 OE = OG

①求证: ODG = OCE

②当 AB = 1 时,求 HC 的长.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 CD 的中点,延长 AE BC 的延长线于点 F

(1)求证: ΔADE ΔFCE

(2)若 BAF = 90 ° BC = 5 EF = 3 ,求 CD 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,以 BC 为直径的 O AB 于点 D E F O 上两点,连接 AE CF DF ,满足 EA = CA

(1)求证: AE O 的切线;

(2)若 O 的半径为3, tan CFD = 4 3 ,求 AD 的长.

来源:2017年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,在 Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 D E 分别在 AC BC 边上, DC = EC ,连接 DE AE BD ,点 M N P 分别是 AE BD AB 的中点,连接 PM PN MN

(1) BE MN 的数量关系是  

(2)将 ΔDEC 绕点 C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;

(3)若 CB = 6 CE = 2 ,在将图1中的 ΔDEC 绕点 C 逆时针旋转一周的过程中,当 B E D 三点在一条直线上时, MN 的长度为  

来源:2017年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,将矩形纸片 ABCD 沿直线 MN 折叠,顶点 B 恰好与 CD 边上的动点 P 重合(点 P 不与点 C D 重合),折痕为 MN ,点 M N 分别在边 AD BC 上,连接 MB MP BP BP MN 相交于点 F

(1)求证: ΔBFN ΔBCP

(2)①在图2中,作出经过 M D P 三点的 O (要求保留作图痕迹,不写做法);

②设 AB = 4 ,随着点 P CD 上的运动,若①中的 O 恰好与 BM BC 同时相切,求此时 DP 的长.

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图:点 C AE 的中点, A = ECD AB = CD ,求证: B = D

来源:2016年云南省中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题