如图,将矩形纸片 ABCD 沿直线 MN 折叠,顶点 B 恰好与 CD 边上的动点 P 重合(点 P 不与点 C , D 重合),折痕为 MN ,点 M , N 分别在边 AD , BC 上,连接 MB , MP , BP , BP 与 MN 相交于点 F .
(1)求证: ΔBFN ∽ ΔBCP ;
(2)①在图2中,作出经过 M , D , P 三点的 ⊙ O (要求保留作图痕迹,不写做法);
②设 AB = 4 ,随着点 P 在 CD 上的运动,若①中的 ⊙ O 恰好与 BM , BC 同时相切,求此时 DP 的长.
如图所示,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.
正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点. (1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE; (2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由; (3)如图②,若点E在上.写出线段DE、BE、AE之间的等量关系.(不必证明)
如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M. (1)填空:∠APC=度,∠BPC=度; (2)求证:△ACM≌△BCP; (3)若PA=1,PB=2,求梯形PBCM的面积.
如图,AB是⊙O的直径,=,∠COD=60°. (1)△AOC是等边三角形吗?请说明理由; (2)求证:OC∥BD.
如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E. (1)请你写出四个不同类型的正确结论; (2)若BE=4,AC=6,求DE.