如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕着点B逆时针旋转90°,得到△A1BC1,请画出△A1BC1;求点A旋转过程中所经过的路径长。(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.
(本题8分))如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,,延长DB到点F,使,连接AF.(1)证明:△BDE∽△FDA;(2)试判断直线AF与⊙O的位置关系,并给出证明.
(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
(本题6分)如图,已知一次函数与反比例函数的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,请直接写出一次函数值小于反比例函数值的的取值范围.
(本题6分)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=,坡长AB=,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F=,求AF的长度.
(本题6分)计算: