定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图1,等腰直角四边形 ABCD , AB = BC , ∠ ABC = 90 ° ,
①若 AB = CD = 1 , AB / / CD ,求对角线 BD 的长.
②若 AC ⊥ BD ,求证: AD = CD ,
(2)如图2,在矩形 ABCD 中, AB = 5 , BC = 9 ,点 P 是对角线 BD 上一点,且 BP = 2 PD ,过点 P 作直线分别交边 AD , BC 于点 E , F ,使四边形 ABFE 是等腰直角四边形,求 AE 的长.
阅读理解: 方程ax2+bx+c=0(a≠0)的根是x=. 方程y2+by+ac=0的根是y=. 因此,要求ax2+bx+c=0(a≠0)的根,只要求出方程y2+by+ac=0的根,再除以a就可以了. 举例:解方程72x2+8x+=0. 解:先解方程y2+8y+72×=0,得y1=﹣2,y2=﹣6. ∴方程72x2+8x+=0的两根是x1=,x2=. 即x1=﹣,x2=﹣. 请按上述阅读理解中所提供的方法解方程49x2+6x﹣=0.
如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形.
如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.
己知一元二次方程x2﹣3x+m﹣1=0. (1)若方程有两个不相等的实数根,求实数m的取值范围; (2)若方程有两个相等的实数根,求此时方程的根.
(根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:
请你将频数分布表和频数分布直方图补充完整.