对给定的一张矩形纸片 ABCD 进行如下操作:先沿 CE 折叠,使点 B 落在 CD 边上(如图① ) ,再沿 CH 折叠,这时发现点 E 恰好与点 D 重合(如图② )
(1)根据以上操作和发现,求 CD AD 的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点 C 与点 H 重合,折痕与 AB 相交于点 P ,再将该矩形纸片展开.求证: ∠ HPC = 90 ° ;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 P 点,要求只有一条折痕,且点 P 在折痕上,请简要说明折叠方法.(不需说明理由)
求和: S = 1 + 4 1 2 + 4 3 2 + 1 + 4 2 2 + 4 4 2 + 1 + 4 3 2 + 4 5 2 + 1 + 4 4 2 + 4 6 2 + ⋯ + 1 + 4 10 2 + 4 12 2 .
x = n + 1 - n n + 1 + n , y = n + 1 + n n + 1 - n , n 为自然数,如果 2 x 2 + 225 xy + 2 y 2 = 2021 成立,求 n 的值.
若 m = 2021 2022 - 1 ,求 m 5 - 2 m 4 - 2021 m 3 的值.
先化简再求值: a - 2 a 2 + 2 a - a - 1 a 2 + 4 a + 4 ÷ a - 4 a + 2 ,其中 a = 2 - 1 .
化简: 37 + 20 3 + 37 - 20 3 .