初中数学

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中,点 E F 分别在矩形的边 AB AD 上,将矩形纸片沿 CE CF 折叠,点 B 落在 H 处,点 D 落在 G 处,点 C H G 恰好在同一直线上,若 AB = 6 AD = 4 BE = 2 ,则 DF 的长是 (    )

A.

2

B.

7 4

C.

3 2 2

D.

3

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, AB = 3 ,点 M CD 的边上,且 DM = 1 ΔAEM ΔADM 关于 AM 所在的直线对称,将 ΔADM 按顺时针方向绕点 A 旋转 90 ° 得到 ΔABF ,连接 EF ,则线段 EF 的长为 (    )

A.3B. 2 3 C. 13 D. 15

来源:2018年广西桂林市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, BC = CD C = 2 BAD O 是四边形 ABCD 内一点,且 OA = OB = OD .求证:

(1) BOD = C

(2)四边形 OBCD 是菱形.

来源:2018年江苏省南京市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

平行四边形 ABCD 中, A = 60 ° AB = 2 AD BD 的中垂线分别交 AB CD 于点 E F ,垂足为 O

(1)求证: OE = OF

(2)若 AD = 6 ,求 tan ABD 的值.

来源:2018年广西百色市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

实验探究:

(1)如图1,对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开;再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN MN .请你观察图1,猜想 MBN 的度数是多少,并证明你的结论.

(2)将图1中的三角形纸片 BMN 剪下,如图2.折叠该纸片,探究 MN BM 的数量关系.写出折叠方案,并结合方案证明你的结论.

来源:2017年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

请认真阅读下面的数学小探究系列,完成所提出的问题:

(1)探究1:如图1,在等腰直角三角形 ABC 中, ACB = 90 ° BC = a ,将边 AB 绕点 B 顺时针旋转 90 ° 得到线段 BD ,连接 CD .求证: ΔBCD 的面积为 1 2 a 2 .(提示:过点 D BC 边上的高 DE ,可证 ΔABC ΔBDE

(2)探究2:如图2,在一般的 Rt Δ ABC 中, ACB = 90 ° BC = a ,将边 AB 绕点 B 顺时针旋转 90 ° 得到线段 BD ,连接 CD .请用含 a 的式子表示 ΔBCD 的面积,并说明理由.

(3)探究3:如图3,在等腰三角形 ABC 中, AB = AC BC = a ,将边 AB 绕点 B 顺时针旋转 90 ° 得到线段 BD ,连接 CD .试探究用含 a 的式子表示 ΔBCD 的面积,要有探究过程.

来源:2018年青海省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,已知在 O 中, AB ̂ = BC ̂ = CD ̂ OC AD 相交于点 E

求证:(1) AD / / BC

(2)四边形 BCDE 为菱形.

来源:2021年山东省临沂市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图为某城市部分街道示意图,四边形 ABCD 为正方形,点 G 在对角线 BD 上, GE CD GF BC AD = 1500 m ,小敏行走的路线为 B A G E ,小聪行走的路线为 B A D E F .若小敏行走的路程为 3100 m ,则小聪行走的路程为   m

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 的对角线 AC BD 相交于点 O

(1)如图1, E G 分别是 OB OC 上的点, CE DG 的延长线相交于点 F .若 DF CE ,求证: OE = OG

(2)如图2, H BC 上的点,过点 H EH BC ,交线段 OB 于点 E ,连接 DH CE 于点 F ,交 OC 于点 G .若 OE = OG

①求证: ODG = OCE

②当 AB = 1 时,求 HC 的长.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 CD 的中点,延长 AE BC 的延长线于点 F

(1)求证: ΔADE ΔFCE

(2)若 BAF = 90 ° BC = 5 EF = 3 ,求 CD 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, ΔABC 为等腰三角形, AB = AC D ΔABC 内一点,连接 AD ,将线段 AD 绕点 A 旋转至 AE ,使得 DAE = BAC F G H 分别为 BC CD DE 的中点,连接 BD CE GF GH

(1)求证: GH = GF

(2)试说明 FGH BAC 互补.

来源:2016年山东省莱芜市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, B = 90 ° ,点 E AC 的中点, AC = 2 AB BAC 的平分线 AD BC 于点 D ,作 AF / / BC ,连接 DE 并延长交 AF 于点 F ,连接 FC

求证:四边形 ADCF 是菱形.

来源:2016年山东省聊城市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

某学习小组的学生在学习中遇到了下面的问题:

如图1,在 ΔABC ΔADE 中, ACB = AED = 90 ° CAB = EAD = 60 ° ,点 E A C 在同一条直线上,连接 BD ,点 F BD 的中点,连接 EF CF ,试判断 ΔCEF 的形状并说明理由.

问题探究:

(1)小婷同学提出解题思路:先探究 ΔCEF 的两条边是否相等,如 EF = CF ,以下是她的证明过程

证明:延长线段 EF CB 的延长线于点 G

F BD 的中点,

BF = DF

ACB = AED = 90 °

ED / / CG

BGF = DEF

BFG = DFE

ΔBGF ΔDEF (   AAS   )

EF = FG

CF = EF = 1 2 EG

请根据以上证明过程,解答下列两个问题:

①在图1中作出证明中所描述的辅助线;

②在证明的括号中填写理由(请在 SAS ASA AAS SSS 中选择).

(2)在(1)的探究结论的基础上,请你帮助小婷求出 CEF 的度数,并判断 ΔCEF 的形状.

问题拓展:

(3)如图2,当 ΔADE 绕点 A 逆时针旋转某个角度时,连接 CE ,延长 DE BC 的延长线于点 P ,其他条件不变,判断 ΔCEF 的形状并给出证明.

来源:2017年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,直线 y = ax + 2 x 轴交于点 A ( 1 , 0 ) ,与 y 轴交于点 B ( 0 , b ) .将线段 AB 先向右平移1个单位长度、再向上平移 t ( t > 0 ) 个单位长度,得到对应线段 CD ,反比例函数 y = k x ( x > 0 ) 的图象恰好经过 C D 两点,连接 AC BD

(1)求 a b 的值;

(2)求反比例函数的表达式及四边形 ABDC 的面积;

(3)点 N x 轴正半轴上,点 M 是反比例函数 y = k x ( x > 0 ) 的图象上的一个点,若 ΔCMN 是以 CM 为直角边的等腰直角三角形时,求所有满足条件的点 M 的坐标.

来源:2018年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题