如图,将矩形纸片 沿直线 折叠,顶点 恰好与 边上的动点 重合(点 不与点 , 重合),折痕为 ,点 , 分别在边 , 上,连接 , , , 与 相交于点 .
(1)求证: ;
(2)①在图2中,作出经过 , , 三点的 (要求保留作图痕迹,不写做法);
②设 ,随着点 在 上的运动,若①中的 恰好与 , 同时相切,求此时 的长.
已知:如图, 、 是平行四边形 的对角线 上的两点, .
求证:(1) ;
(2) .
如图放置的两个正方形,大正方形 边长为 ,小正方形 边长为 , 在 边上,且 ,连接 , , 交 于点 ,将 绕点 旋转至 ,将 绕点 旋转至 ,给出以下五个结论:① ;② ;③ ;④ ;⑤ , , , 四点共圆,其中正确的个数是
A.2B.3C.4D.5
已知正方形 , 为射线 上的一点,以 为边作正方形 ,使点 在线段 的延长线上,连接 , .
(1)如图1,若点 在线段 的延长线上,求证: ;
(2)如图2,若点 在线段 的中点,连接 ,判断 的形状,并说明理由;
(3)如图3,若点 在线段 上,连接 ,当 平分 时,设 , ,求 及 的度数.
如图①, ,延长 , 相交于点 .
(1)求证: ;
(2)将两个三角形绕点 旋转,当 时(如图② ,连接 、 .取 的中点 ,连接 ,则线段 、 的数量关系为 ,位置关系为 ;
(3)将图②中的线段 , 同时绕点 顺时针方向旋转到图③所示位置,连接 、 ,取 的中点 ,连接 ,请你判断(2)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.
如图为某城市部分街道示意图,四边形 为正方形,点 在对角线 上, , , ,小敏行走的路线为 ,小聪行走的路线为 .若小敏行走的路程为 ,则小聪行走的路程为 .
已知正方形 的对角线 , 相交于点 .
(1)如图1, , 分别是 , 上的点, 与 的延长线相交于点 .若 ,求证: ;
(2)如图2, 是 上的点,过点 作 ,交线段 于点 ,连接 交 于点 ,交 于点 .若 ,
①求证: ;
②当 时,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
已知正方形 的边长为4,一个以点 为顶点的 角绕点 旋转,角的两边分别与边 、 的延长线交于点 、 ,连接 .设 , .
(1)如图1,当 被对角线 平分时,求 、 的值;
(2)当 是直角三角形时,求 、 的值;
(3)如图3,探索 绕点 旋转的过程中 、 满足的关系式,并说明理由.
阅读理解:
我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.
例如:角的平分线是到角的两边距离相等的点的轨迹.
问题:如图1,已知 为 的中位线, 是边 上一动点,连接 交 于点 ,那么动点 为线段 中点.
理由: 线段 为 的中位线, ,
由平行线分线段成比例得:动点 为线段 中点.
由此你得到动点 的运动轨迹是: .
知识应用:
如图2,已知 为等边 边 、 上的动点,连接 ;若 ,且等边 的边长为8,求线段 中点 的运动轨迹的长.
拓展提高:
如图3, 为线段 上一动点(点 不与点 、 重合),在线段 的同侧分别作等边 和等边 ,连接 、 ,交点为 .
(1)求 的度数;
(2)若 ,求动点 运动轨迹的长.