如图①, ΔAOB ≅ ΔCOD ,延长 AB , CD 相交于点 E .
(1)求证: DE = BE ;
(2)将两个三角形绕点 O 旋转,当 ∠ AEC = 90 ° 时(如图② ) ,连接 BC 、 AD .取 BC 的中点 F ,连接 EF ,则线段 EF 、 AD 的数量关系为 ,位置关系为 ;
(3)将图②中的线段 EB , ED 同时绕点 E 顺时针方向旋转到图③所示位置,连接 AD 、 BC ,取 BC 的中点 F ,连接 EF ,请你判断(2)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.
计算 ( - 1 2 ) 2 + ( 3 - π ) 0 +| 3 -2|+2sin60°- 8 .
如图,在平面直角坐标系中,抛物线 y=a x 2 +bx+c 经过原点 O ,顶点为 A(2,-4) .
(1)求抛物线的函数解析式;
(2)设点 P 为抛物线 y=a x 2 +bx+c 的对称轴上的一点,点 Q 在该抛物线上,当四边
形 OAQP 为菱形时,求出点 P 的坐标;
(3)在(2)的条件下,抛物线 y=a x 2 +bx+c 在第一象限的图象上是否存在一点 M ,使得点 M 到直线 OP 的距离与其到 x 轴的距离相等?若存在,求出直线 OM 的函数解析式;若不存在,请说明理由.
如图, RtΔABC 中, ∠ABC=90° , D 为 AB 延长线上一点, BD=BC ,过点 D 作 DE⊥AC 于点 E ,交 BC 于点 F ,连接 BE , CD .
(1)求证: AB=BF ;
(2)求 ∠AEB 的度数;
(3)当 ∠A=60° 时,求 BE BF 的值.
某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.
(1)当每件商品的售价为64元时,求该商品每天的销售数量;
(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.
如图, AB 为 ⊙O 的直径, C 为 ⊙O 上的一点, ∠BCH=∠A , ∠H=90° , HB 的延长线交 ⊙O 于点 D ,连接 CD .
(1)求证: CH 是 ⊙O 的切线;
(2)若 B 为 DH 的中点,求 tanD 的值.