已知:如图,在平面直角坐标系中,抛物线过点A(6,0)和点B(3,). (1)求抛物线的解析式; (2)将抛物线沿x轴翻折得抛物线,求抛物线的解析式; (3)在(2)的条件下,抛物线上是否存在点M,使与相似?如果存在,求出点M的坐标;如果不存在,说明理由.
小明同学在教室透过窗户看外面的小树,他能看见小树的全部吗?请在图1中画说明.如果他想看清楚小树的全部,应该往(填前或后)走.在图2中画出视点A(小明眼睛)的位置.
如图,点P的对面是一面东西走向的墙,某人在点P观察一辆自西向东行驶的汽车AB,汽车的长为6米,根据图中标示的数据解决下列问题: (1)画出此人在汽车与墙之间形成的盲区,并求出该盲区的面积; (2)当汽车行驶到CD位置时,盲区的面积是否会发生变化?为什么?
综合实践活动课,某数学兴趣小组在学校操场上想测量汽车的速度,利用如下方法:如图,小王站在点处A(点A处)和公路(l)之间竖立着一块30m长且平行于公路的巨型广告牌(DE).广告牌挡住了小王的视线,请在图中画出视点A的盲区,并将盲区内的那段公路记为BC.已知一辆匀速行驶的汽车经过公路BC段的时间是3s,已知小王到广告牌和公路的距离是分别是40m和80m,求该汽车的速度?
如图假设一座大楼高30米,观众坐在距大楼500米处,魔术师只需做一个屏障,屏障上的图画和没有大楼以后的景物一样,将屏障立在大楼前100米处,这样观众看上去好像大楼突然消失了.若要完全挡住大楼,请你找到一个方法计算出屏障至少要多高?(人身高忽略不计)
当你进入博物馆的展览厅时,你知道站在何处观赏最理想? 如图,设墙壁上的展品最高处点P距离地面a米,最低处点Q距离地面b米,观赏者的眼睛点E距离地面m米,当过P、Q、E三点的圆与过点E的水平线相切于点E时,视角∠PEQ最大,站在此处观赏最理想. (1)设点E到墙壁的距离为x米,求a、b、m、x的关系式; (2)当a=2.5,b=2,m=1.6,求: (ⅰ)点E和墙壁距离x; (ⅱ)最大视角∠PEQ的度数.(精确到1度)