初中数学

如图,四边形 ABCD 是正方形,连接 AC ,将 ΔABC 绕点 A 逆时针旋转 α ΔAEF ,连接 CF O CF 的中点,连接 OE OD

(1)如图1,当 α = 45 ° 时,请直接写出 OE OD 的关系(不用证明).

(2)如图2,当 45 ° < α < 90 ° 时,(1)中的结论是否成立?请说明理由.

(3)当 α = 360 ° 时,若 AB = 4 2 ,请直接写出点 O 经过的路径长.

来源:2019年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,点 F 从点 B 向点 C 运动,点 E 从点 A 沿射线 CA 方向运动,且 BF = AE ,连接 EF AB D

(1)如图1,当 AB = BC 时,求证: AB = 2 AD + BF

(2)如图2,当 AB = 2 3 BC 时,① AD = 6 BF = 15 2 ,则 AB =   

②过点 F FP AB 于点 P ,探究线段 AB AD FP 之间的数量关系,直接写出结论,不需证明.

来源:2016年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° D ΔABC 内一点,连接 AD BD ,在 BD 左侧作 Rt Δ BDE ,使 BDE = 90 ° ,以 AD DE 为邻边作 ADEF ,连接 CD DF

(1)若 AC = BC BD = DE

①如图1,当 B D F 三点共线时, CD DF 之间的数量关系为  

②如图2,当 B D F 三点不共线时,①中的结论是否仍然成立?请说明理由.

(2)若 BC = 2 AC BD = 2 DE CD AC = 4 5 ,且 E C F 三点共线,求 AF CE 的值.

来源:2019年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

四边形 ABCD 是边长为4的正方形,点 E 在边 AD 所在直线上,连接 CE ,以 CE 为边,作正方形 CEFG (点 D ,点 F 在直线 CE 的同侧),连接 BF

(1)如图1,当点 E 与点 A 重合时,请直接写出 BF 的长;

(2)如图2,当点 E 在线段 AD 上时, AE = 1

①求点 F AD 的距离;

②求 BF 的长;

(3)若 BF = 3 10 ,请直接写出此时 AE 的长.

来源:2017年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,已知 AOB = 60 ° ,在 AOB 的平分线 OM 上有一点 C ,将一个 120 ° 角的顶点与点 C 重合,它的两条边分别与直线 OA OB 相交于点 D E

(1)当 DCE 绕点 C 旋转到 CD OA 垂直时(如图 1 ) ,请猜想 OE + OD OC 的数量关系,并说明理由;

(2)当 DCE 绕点 C 旋转到 CD OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;

(3)当 DCE 绕点 C 旋转到 CD OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段 OD OE OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.

来源:2018年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° ,点 O AB 中点,点 P 为直线 BC 上的动点(不与点 B 、点 C 重合),连接 OC OP ,将线段 OP 绕点 P 顺时针旋转 60 ° ,得到线段 PQ ,连接 BQ

(1)如图1,当点 P 在线段 BC 上时,请直接写出线段 BQ CP 的数量关系.

(2)如图2,当点 P CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;

(3)如图3,当点 P BC 延长线上时,若 BPO = 15 ° BP = 4 ,请求出 BQ 的长

来源:2017年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

正方形 ABCD 的边长为 6 cm ,点 E M 分别是线段 BD AD 上的动点,连接 AE 并延长,交边 BC F ,过 M MN AF ,垂足为 H ,交边 AB 于点 N

(1)如图1,若点 M 与点 D 重合,求证: AF = MN

(2)如图2,若点 M 从点 D 出发,以 1 cm / s 的速度沿 DA 向点 A 运动,同时点 E 从点 B 出发,以 2 cm / s 的速度沿 BD 向点 D 运动,运动时间为 ts

①设 BF = ycm ,求 y 关于 t 的函数表达式;

②当 BN = 2 AN 时,连接 FN ,求 FN 的长.

来源:2017年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 CD 的中点,延长 AE BC 的延长线于点 F

(1)求证: ΔADE ΔFCE

(2)若 BAF = 90 ° BC = 5 EF = 3 ,求 CD 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 AD 的中点,连接 CE 并延长交 BA 的延长线于 F ,若 CD = 6 ,求 BF 的长.

来源:2017年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图放置的两个正方形,大正方形 ABCD 边长为 a ,小正方形 CEFG 边长为 b ( a > b ) M BC 边上,且 BM = b ,连接 AM MF MF CG 于点 P ,将 ΔABM 绕点 A 旋转至 ΔADN ,将 ΔMEF 绕点 F 旋转至 ΔNGF ,给出以下五个结论:① MAD = AND ;② CP = b b 2 a ;③ ΔABM ΔNGF ;④ S 四边形AMFN = a 2 + b 2 ;⑤ A M P D 四点共圆,其中正确的个数是 (    )

A.2B.3C.4D.5

来源:2017年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 90 ° AB = AC AD BC 于点 D

(1)如图1,点 E F AB AC 上,且 EDF = 90 ° .求证: BE = AF

(2)点 M N 分别在直线 AD AC 上,且 BMN = 90 °

①如图2,当点 M AD 的延长线上时,求证: AB + AN = 2 AM

②当点 M 在点 A D 之间,且 AMN = 30 ° 时,已知 AB = 2 ,直接写出线段 AM 的长.

来源:2018年辽宁省阜新市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E CD 的中点,将 ΔBCE 沿 BE 折叠后得到 ΔBEF 、且点 F 在矩形 ABCD 的内部,将 BF 延长交 AD 于点 G .若 DG GA = 1 7 ,则 AD AB =   

来源:2018年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图, A = B AE = BE ,点 D AC 边上, 1 = 2 AE BD 相交于点 O

(1)求证: ΔAEC ΔBED

(2)若 1 = 42 ° ,求 BDE 的度数.

来源:2017年江苏省苏州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, OF MON 的平分线,点 A 在射线 OM 上, P Q 是直线 ON 上的两动点,点 Q 在点 P 的右侧,且 PQ = OA ,作线段 OQ 的垂直平分线,分别交直线 OF ON 于点 B 、点 C ,连接 AB PB

(1)如图1,当 P Q 两点都在射线 ON 上时,请直接写出线段 AB PB 的数量关系;

(2)如图2,当 P Q 两点都在射线 ON 的反向延长线上时,线段 AB PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

(3)如图3, MON = 60 ° ,连接 AP ,设 AP OQ = k ,当 P Q 两点都在射线 ON 上移动时, k 是否存在最小值?若存在,请直接写出 k 的最小值;若不存在,请说明理由.

来源:2017年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的对角线 AC BD 相交于点 O ,延长 CB 至点 F ,使 CF = CA ,连接 AF ACF 的平分线分别交 AF AB BD 于点 E N M ,连接 EO

(1)已知 EO = 2 ,求正方形 ABCD 的边长;

(2)猜想线段 EM CN 的数量关系并加以证明.

来源:2016年山东省济宁市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题