在 Rt Δ ABC 中, ∠ ACB = 90 ° , D 是 ΔABC 内一点,连接 AD , BD ,在 BD 左侧作 Rt Δ BDE ,使 ∠ BDE = 90 ° ,以 AD 和 DE 为邻边作 ▱ ADEF ,连接 CD , DF .
(1)若 AC = BC , BD = DE .
①如图1,当 B , D , F 三点共线时, CD 与 DF 之间的数量关系为 .
②如图2,当 B , D , F 三点不共线时,①中的结论是否仍然成立?请说明理由.
(2)若 BC = 2 AC , BD = 2 DE , CD AC = 4 5 ,且 E , C , F 三点共线,求 AF CE 的值.
(12分)如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE. (1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由; (2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中: ①线段AD与EC的长度相等吗?请说明理由. ②锐角的度数是否改变?若不变,请求出的度数;若改变,请说明理由. (注:等边三角形的三条边都相等,三个角都是60°)
(10分)如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC。 (1)求证:△ADO≌△AEO (2)猜想OB与OC的数量关系,并说明理由.
画图题: (1)如图,已知△ABC和直线m,以直线m为对称轴,画△ABC经轴对称变换后所得的像△DEF。 (2)如图:在正方形网格中有一个△ABC,按要求进行下列作图; ①画出△ABC中BC边上的高。 ②画出先将△ABC向右平移6格,再向上平移3格后的△DEF。③画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积。
市政府计划修建一处公共服务设施P,使它到AB、BC、CA三条道路的距离相等. (1)若三条道路AB、BC、CA的位置如图所示,则图中七个区域可以修建公共设施P的区域有_____________(请将序号填在横线上). (2)请你选择一个区域确定公共设施P的位置(保留尺规作图痕迹,不写作法).
如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度数。