在 Rt Δ ABC 中, ∠ ACB = 90 ° , D 是 ΔABC 内一点,连接 AD , BD ,在 BD 左侧作 Rt Δ BDE ,使 ∠ BDE = 90 ° ,以 AD 和 DE 为邻边作 ▱ ADEF ,连接 CD , DF .
(1)若 AC = BC , BD = DE .
①如图1,当 B , D , F 三点共线时, CD 与 DF 之间的数量关系为 .
②如图2,当 B , D , F 三点不共线时,①中的结论是否仍然成立?请说明理由.
(2)若 BC = 2 AC , BD = 2 DE , CD AC = 4 5 ,且 E , C , F 三点共线,求 AF CE 的值.
如图,在△ABC中,D、E两点分别在AB和AC上,求证CD、BE不可能互相平分.
已知直线a和直线外的两点A、B,经过A、B作一圆,使它的圆心在直线a上.
已知:如图等边内接于⊙O,点是劣弧上的一点(端点除外),延长至,使,连结.(1)若过圆心,如图①,请你判断是什么三角形?并说明理由.(2)若不过圆心,如图②,又是什么三角形?为什么?
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE。(1)求证:AC=AE;(2)求△ACD外接圆的半径。
如图所示,已知AB为⊙O的直径,CD是弦,且ABCD于点E.连接AC、OC、BC.(1)求证:ACO=BCD. (2)若EB=,CD=,求⊙O的直径.