如图,四边形 ABCD 是正方形,连接 AC ,将 ΔABC 绕点 A 逆时针旋转 α 得 ΔAEF ,连接 CF , O 为 CF 的中点,连接 OE , OD .
(1)如图1,当 α = 45 ° 时,请直接写出 OE 与 OD 的关系(不用证明).
(2)如图2,当 45 ° < α < 90 ° 时,(1)中的结论是否成立?请说明理由.
(3)当 α = 360 ° 时,若 AB = 4 2 ,请直接写出点 O 经过的路径长.
解方程:(1);(2)
计算:(1)4―-3×;(2)
(本题12分)抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3). (1)求抛物线的解析式; (2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标; (3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(本题10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%. (1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围. (2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元? (成本=进价×销售量)
(本题10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5). (1)求证:△ACD∽△BAC; (2)求DC的长; (3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.