如图,已知 ∠ AOB = 60 ° ,在 ∠ AOB 的平分线 OM 上有一点 C ,将一个 120 ° 角的顶点与点 C 重合,它的两条边分别与直线 OA 、 OB 相交于点 D 、 E .
(1)当 ∠ DCE 绕点 C 旋转到 CD 与 OA 垂直时(如图 1 ) ,请猜想 OE + OD 与 OC 的数量关系,并说明理由;
(2)当 ∠ DCE 绕点 C 旋转到 CD 与 OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;
(3)当 ∠ DCE 绕点 C 旋转到 CD 与 OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段 OD 、 OE 与 OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.
如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长 AO交⊙O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线; (2)若平行四边形OABC的两边长是方程的两根,求平行四边形OABC的面积.
如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE。(1)求证:∠B=∠D;(2)若AB= ,BC-AC=2,求CE的长。
如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.
如图,∠C=90°,以AC为半径的⊙C与AB相交于点D.若AC=3,CB=4.求BD长
已知关于x的一元二次方程x2-6x+k=0有实数根.(1)求k的取值范围; (2)如果k取符合条件的最大整数,且一元二次方程x2-6x+k=0与x2+mx-1=0有一个相同的根,求常数m的值.