计算: (-17)+59+(-37);
如图,已知在△ABC中,AB=AC,BC=8,tan∠ABC=3,AD⊥BC于D,O是AD上一点,OD=3,以OB为半径的⊙O分别交AB、AC于E、F.求:(1)⊙O的半径;(2)BE的长.
解方程:
如图,在等腰△ABC中,AB=AC=5,BC=6,点D为BC边上一动点(不与点B重合),过D作射线DE交AB边于E,使∠BDE=∠A,以D为圆心、DC的长为半径作⊙D.(1)设BD=x,AE=y,求y关于x的函数关系式,并写出定义域.(2)当⊙D与AB边相切时,求BD的长.(3)如果⊙E是以E为圆心,AE的长为半径的圆,那么当BD的长为多少时,⊙D与⊙E相切?
如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.(1)快艇从港口B到小岛C需要多少时间?(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?
如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.(1)求该抛物线的解析式;(2)求证:△OAB是等腰直角三角形;(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.