如图, 和 均为等腰三角形,点 , , 在同一直线上,连接 .
(1)如图1,若
①求证: ;
②求 的度数.
(2)如图2,若 , 为 中 边上的高, 为 中 边上的高,试证明: .
在 中, 、 分别是 、 上的点,将平行四边形 沿 所在直线翻折,使点 与点 重合,且点 落在点 处.
(1)求证:△ ;
(2)连接 ,若 , ,求四边形 的面积.
我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形 中,点 , , , 分别为边 , , , 的中点.求证:中点四边形 是平行四边形;
(2)如图2,点 是四边形 内一点,且满足 , , ,点 , , , 分别为边 , , , 的中点,猜想中点四边形 的形状,并证明你的猜想;
(3)若改变(2)中的条件,使 ,其他条件不变,直接写出中点四边形 的形状.(不必证明)
如图1,在 中, , ,点 是 的中点,连接 ,点 是线段 延长线上一点,且 ,连接 交 于点 .将射线 绕点 逆时针旋转 交线段 的延长线于点 .
(1)找出与 相等的角,并说明理由.
(2)如图2, ,求 的值.
(3)在(2)的条件下,若 ,求线段 的长.
已知: 和 均为等边三角形,连接 , ,点 , , 分别为 , , 中点.
(1)当 绕点 旋转时,如图1,则 的形状为 ,说明理由;
(2)在 旋转的过程中,当 , , 三点共线时,如图2,若 , ,求线段 的长;
(3)在 旋转的过程中,若 , ,则 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
正方形 的边长为 ,点 、 分别是线段 、 上的动点,连接 并延长,交边 于 ,过 作 ,垂足为 ,交边 于点 .
(1)如图1,若点 与点 重合,求证: ;
(2)如图2,若点 从点 出发,以 的速度沿 向点 运动,同时点 从点 出发,以 的速度沿 向点 运动,运动时间为 .
①设 ,求 关于 的函数表达式;
②当 时,连接 ,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
如图放置的两个正方形,大正方形 边长为 ,小正方形 边长为 , 在 边上,且 ,连接 , , 交 于点 ,将 绕点 旋转至 ,将 绕点 旋转至 ,给出以下五个结论:① ;② ;③ ;④ ;⑤ , , , 四点共圆,其中正确的个数是
A.2B.3C.4D.5
如图所示,直线 和圆 相切于点 ,交直径 的延长线于点 .过点 作 的垂线,交 于点 ,交圆 于点 .作平行四边形 ,连接 , , .
(1)求证: ;
(2)求 及 的大小.
如图,在 中, ,连接 并延长交 的延长线于点 .
(1)求证: ;
(2)若 , .求 的度数.
如图,是具有公共边 的两个直角三角形,其中, , .
(1)如图1,若延长 到点 ,使 ,连接 , .
①求证: , ;
②求证: ;
(2)若 与 位置如图2所示,请直接写出线段 , , 的数量关系.