初中数学

如图, ΔACB ΔDCE 均为等腰三角形,点 A D E 在同一直线上,连接 BE

(1)如图1,若 CAB = CBA = CDE = CED = 50 °

①求证: AD = BE

②求 AEB 的度数.

(2)如图2,若 ACB = DCE = 120 ° CM ΔDCE DE 边上的高, BN ΔABE AE 边上的高,试证明: AE = 2 3 CM + 2 3 3 BN

来源:2016年山东省菏泽市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

ABCD 中, E F 分别是 AD BC 上的点,将平行四边形 ABCD 沿 EF 所在直线翻折,使点 B 与点 D 重合,且点 A 落在点 A ' 处.

(1)求证:△ A ' ED ΔCFD

(2)连接 BE ,若 EBF = 60 ° EF = 3 ,求四边形 BFDE 的面积.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形 ABCD 中,点 E F G H 分别为边 AB BC CD DA 的中点.求证:中点四边形 EFGH 是平行四边形;

(2)如图2,点 P 是四边形 ABCD 内一点,且满足 PA = PB PC = PD APB = CPD ,点 E F G H 分别为边 AB BC CD DA 的中点,猜想中点四边形 EFGH 的形状,并证明你的猜想;

(3)若改变(2)中的条件,使 APB = CPD = 90 ° ,其他条件不变,直接写出中点四边形 EFGH 的形状.(不必证明)

来源:2016年山东省德州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,在 Rt Δ ABC 中, ACB = 90 ° B = 30 ° ,点 M AB 的中点,连接 MC ,点 P 是线段 BC 延长线上一点,且 PC < BC ,连接 MP AC 于点 H .将射线 MP 绕点 M 逆时针旋转 60 ° 交线段 CA 的延长线于点 D

(1)找出与 AMP 相等的角,并说明理由.

(2)如图2, CP = 1 2 BC ,求 AD BC 的值.

(3)在(2)的条件下,若 MD = 13 3 ,求线段 AB 的长.

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 均为等边三角形,连接 BE CD ,点 F G H 分别为 DE BE CD 中点.

(1)当 ΔADE 绕点 A 旋转时,如图1,则 ΔFGH 的形状为  ,说明理由;

(2)在 ΔADE 旋转的过程中,当 B D E 三点共线时,如图2,若 AB = 3 AD = 2 ,求线段 FH 的长;

(3)在 ΔADE 旋转的过程中,若 AB = a AD = b ( a > b > 0 ) ,则 ΔFGH 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

来源:2017年辽宁省锦州市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,已知 1 = 2 3 = 4 ,求证: BC = BD

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

正方形 ABCD 的边长为 6 cm ,点 E M 分别是线段 BD AD 上的动点,连接 AE 并延长,交边 BC F ,过 M MN AF ,垂足为 H ,交边 AB 于点 N

(1)如图1,若点 M 与点 D 重合,求证: AF = MN

(2)如图2,若点 M 从点 D 出发,以 1 cm / s 的速度沿 DA 向点 A 运动,同时点 E 从点 B 出发,以 2 cm / s 的速度沿 BD 向点 D 运动,运动时间为 ts

①设 BF = ycm ,求 y 关于 t 的函数表达式;

②当 BN = 2 AN 时,连接 FN ,求 FN 的长.

来源:2017年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 CD 的中点,延长 AE BC 的延长线于点 F

(1)求证: ΔADE ΔFCE

(2)若 BAF = 90 ° BC = 5 EF = 3 ,求 CD 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 AD 的中点,连接 CE 并延长交 BA 的延长线于 F ,若 CD = 6 ,求 BF 的长.

来源:2017年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图放置的两个正方形,大正方形 ABCD 边长为 a ,小正方形 CEFG 边长为 b ( a > b ) M BC 边上,且 BM = b ,连接 AM MF MF CG 于点 P ,将 ΔABM 绕点 A 旋转至 ΔADN ,将 ΔMEF 绕点 F 旋转至 ΔNGF ,给出以下五个结论:① MAD = AND ;② CP = b b 2 a ;③ ΔABM ΔNGF ;④ S 四边形AMFN = a 2 + b 2 ;⑤ A M P D 四点共圆,其中正确的个数是 (    )

A.2B.3C.4D.5

来源:2017年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图所示,直线 DP 和圆 O 相切于点 C ,交直径 AE 的延长线于点 P .过点 C AE 的垂线,交 AE 于点 F ,交圆 O 于点 B .作平行四边形 ABCD ,连接 BE DO CO

(1)求证: DA = DC

(2)求 P AEB 的大小.

来源:2017年湖南省邵阳市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE = CE ,连接 AE 并延长交 BC 的延长线于点 F

(1)求证: ΔADE ΔFCE

(2)若 AB = 2 BC F = 36 ° .求 B 的度数.

来源:2017年湖南省湘潭市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图,是具有公共边 AB 的两个直角三角形,其中, AC = BC ACB = ADB = 90 °

(1)如图1,若延长 DA 到点 E ,使 AE = BD ,连接 CD CE

①求证: CD = CE CD CE

②求证: AD + BD = 2 CD

(2)若 ΔABC ΔABD 位置如图2所示,请直接写出线段 AD BD CD 的数量关系.

来源:2019年辽宁省阜新市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, AD BC 相交于点 O AD = BC C = D = 90 °

(1)求证: ΔACB ΔBDA

(2)若 ABC = 35 ° ,则 CAO =         °

来源:2016年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知,如图,平行四边形 ABCD 中, E BC 边的中点,连接 DE 并延长交 AB 的延长线于点 F ,求证: AB = BF

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题