如图,是具有公共边 AB 的两个直角三角形,其中, AC = BC , ∠ ACB = ∠ ADB = 90 ° .
(1)如图1,若延长 DA 到点 E ,使 AE = BD ,连接 CD , CE .
①求证: CD = CE , CD ⊥ CE ;
②求证: AD + BD = 2 CD ;
(2)若 ΔABC 与 ΔABD 位置如图2所示,请直接写出线段 AD , BD , CD 的数量关系.
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.(1)若取AE的中点P,求证:;(2)在图①中,若将△BEF绕点B顺时针方向旋转(<<),如图②,是否存在某位置,使得AE∥BF,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
已知:如图所示,在Rt△ABC中,,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且.判断直线BD与⊙O的位置关系,并证明你的结论.
如图,有一个长为24米的篱笆,一面有围墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1)求S与x的函数关系式及x的取值范围.(2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?
如图,DE为半圆的直径,O为圆心,DE=10,延长DE到A,使得EA=1,直线AC与半圆交于B、C两点,且.求弦BC的长;
已知抛物线的对称轴为y轴,该函数的最大值为3,且经过点(1,1)(1)求此抛物线的解析式(2)若该抛物线与x轴交于A、B两点(A点在B点的左边)与y轴交于点C,求S△ABC.