我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形 ABCD 中,点 E , F , G , H 分别为边 AB , BC , CD , DA 的中点.求证:中点四边形 EFGH 是平行四边形;
(2)如图2,点 P 是四边形 ABCD 内一点,且满足 PA = PB , PC = PD , ∠ APB = ∠ CPD ,点 E , F , G , H 分别为边 AB , BC , CD , DA 的中点,猜想中点四边形 EFGH 的形状,并证明你的猜想;
(3)若改变(2)中的条件,使 ∠ APB = ∠ CPD = 90 ° ,其他条件不变,直接写出中点四边形 EFGH 的形状.(不必证明)
(年青海省西宁市)如图,CD是△ABC的中线,点E是AF的中点,CF∥AB. (1)求证:CF=AD; (2)若∠ACB=90°,试判断四边形BFCD的形状,并说明理由.
(年新疆、生产建设兵团)如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE. (1)如图①,求证:∠AFD=∠EBC; (2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数; (3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)
(年江西省南昌市)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c. 特例探索 (1)如图1,当∠ABE=45°,c=时,a= ,b= . 如图2,当∠ABE=30°,c=4时,a= ,b= . 归纳证明 (2)请你观察(1)中的计算结果,猜想,,三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式. 拓展应用 (3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3,求AF的长.
(年江西省南昌市)(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′ 的位置,拼成四边形AEE′D,则四边形AEE′D的形状为() A.平行四边形 B.菱形 C.矩形 D.正方形 (2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′ 的位置,拼成四边形AFF′D. ① 求证四边形AFF′D是菱形; ② 求四边形AFF′D两条对角线的长.
(年贵州省遵义市)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F. (1)求证:△AEF≌△DEB; (2)证明四边形ADCF是菱形; (3)若AC=4,AB=5,求菱形ADCFD的面积.