如图,在 ΔABC 中, AC = BC ,点 F 从点 B 向点 C 运动,点 E 从点 A 沿射线 CA 方向运动,且 BF = AE ,连接 EF 交 AB 于 D .
(1)如图1,当 AB = BC 时,求证: AB = 2 AD + BF ;
(2)如图2,当 AB = 2 3 BC 时,① AD = 6 , BF = 15 2 ,则 AB = ;
②过点 F 作 FP ⊥ AB 于点 P ,探究线段 AB , AD , FP 之间的数量关系,直接写出结论,不需证明.
已知3b-2a-1=3a-2b,请利用等式性质比较a与b的大小.
某退休老师想为希望小学三年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典. (1)每个书包和每本词典的价格各是多少元? (2)老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?
某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3. (1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围; (2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?
如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形. (1)求AD的长; (2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.
先化简,再求值:÷,其中a=﹣1.