如图,⊙ O的直径 AB=10,弦 AC=8,连接 BC.
(1)尺规作图:作弦 CD,使 CD= BC(点 D不与 B重合),连接 AD;(保留作图痕迹,不写作法)
(2)在(1)所作的图中,求四边形 ABCD的周长.
如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O. (1)求边AB的长; (2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G. ①判断△AEF是哪一种特殊三角形,并说明理由; ②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
已知:如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC于E点,交DF于M,F是BC延长线上一点,且CE=CF. (1)求证:BM⊥DF; (2)若正方形ABCD的边长为2,求ME•MB.
如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G. (1)求证:AF⊥BE; (2)试探究线段AO、BO、GO的长度之间的数量关系; (3)若GO:CF=4:5,试确定E点的位置.
如图所示,在形状和大小不确定的△ABC中,BC=6,E、F分别是AB、AC的中点,P在EF或EF的延长线上,BP交CE于D,Q在CE上且BQ平分∠CBP,设BP=y,PE=x. (1)当x=EF时,求S△DPE:S△DBC的值; (2)当CQ=CE时,求y与x之间的函数关系式; (3)①当CQ=CE时,求y与x之间的函数关系式; ②当CQ=CE(n为不小于2的常数)时,直接写出y与x之间的函数关系式.
如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证: (1)CG=BH; (2)FC2=BF•GF; (3)=.