如图, 中, ,点 , 在边 上, ,点 在 的延长线上, .
(1)求证: ;
(2)若 ,则 .
如图,在正方形 中, , 为边 上一点, 为边 上一点.连接 和 交于点 ,连接 .若 ,则 的最小值为 .
问题背景:如图1,等腰 中, , ,作 于点 ,则 为 的中点, ,于是 ;
迁移应用:如图2, 和 都是等腰三角形, , , , 三点在同一条直线上,连接 .
①求证: ;
②请直接写出线段 , , 之间的等量关系式;
拓展延伸:如图3,在菱形 中, ,在 内作射线 ,作点 关于 的对称点 ,连接 并延长交 于点 ,连接 , .
①证明 是等边三角形;
②若 , ,求 的长.
已知:如图,平行四边形 ,对角线 与 相交于点 ,点 为 的中点,连接 , 的延长线交 的延长线于点 ,连接 .
(1)求证: ;
(2)若 , ,判断四边形 的形状,并证明你的结论.
如图,在矩形 中,对角线 的垂直平分线 分别交 、 、 于点 、 、 ,连接 和 .
(1)求证:四边形 为菱形;
(2)若 , ,求菱形 的周长.
如图,四边形 是矩形,点 的坐标为 ,点 的坐标为 ,把矩形 沿 折叠,点 落在点 处,则点 的坐标为 .
如图,在平行四边形 中, , ,过点 作边 的垂线 交 的延长线于点 ,点 是垂足,连接 、 , 交 于点 .则下列结论:①四边形 是正方形;② ;③ ;④ ,正确的个数是
A.1B.2C.3D.4
如图为某城市部分街道示意图,四边形 为正方形,点 在对角线 上, , , ,小敏行走的路线为 ,小聪行走的路线为 .若小敏行走的路程为 ,则小聪行走的路程为 .
已知正方形 的对角线 , 相交于点 .
(1)如图1, , 分别是 , 上的点, 与 的延长线相交于点 .若 ,求证: ;
(2)如图2, 是 上的点,过点 作 ,交线段 于点 ,连接 交 于点 ,交 于点 .若 ,
①求证: ;
②当 时,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
如图,在 中, ,点 在 上, ,点 在 上,连接 , ,作 ,垂足为 .
(1)如图 ,当 时,连接 ,过点 作 交 的延长线于点 .
①求证: ;
②请猜想三条线段 , , 之间的数量关系,直接写出结论;
(2)如图 ,当 时,三条线段 , , 之间存在怎样的数量关系?请证明你的结论.
如图,一只蚂蚁在正方形 区域内爬行,点 是对角线的交点, , , 分别交线段 , 于 , 两点,则蚂蚁停留在阴影区域的概率为 .
将矩形 绕点 顺时针旋转 ,得到矩形 .
(1)如图,当点 在 上时.求证: ;
(2)当 为何值时, ?画出图形,并说明理由.