初中数学

如图, ΔABC 中, AB = AC ,点 E F 在边 BC 上, BE = CF ,点 D AF 的延长线上, AD = AC

(1)求证: ΔABE ΔACF

(2)若 BAE = 30 ° ,则 ADC =     °

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, AB = 2 E 为边 AB 上一点, F 为边 BC 上一点.连接 DE AF 交于点 G ,连接 BG .若 AE = BF ,则 BG 的最小值为   

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

问题背景:如图1,等腰 ΔABC 中, AB = AC BAC = 120 ° ,作 AD BC 于点 D ,则 D BC 的中点, BAD = 1 2 BAC = 60 ° ,于是 BC AB = 2 BD AB = 3

迁移应用:如图2, ΔABC ΔADE 都是等腰三角形, BAC = DAE = 120 ° D E C 三点在同一条直线上,连接 BD

①求证: ΔADB ΔAEC

②请直接写出线段 AD BD CD 之间的等量关系式;

拓展延伸:如图3,在菱形 ABCD 中, ABC = 120 ° ,在 ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE CF

①证明 ΔCEF 是等边三角形;

②若 AE = 5 CE = 2 ,求 BF 的长.

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知:如图,平行四边形 ABCD ,对角线 AC BD 相交于点 E ,点 G AD 的中点,连接 CG CG 的延长线交 BA 的延长线于点 F ,连接 FD

(1)求证: AB = AF

(2)若 AG = AB BCD = 120 ° ,判断四边形 ACDF 的形状,并证明你的结论.

来源:2018年山东省青岛市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,四边形 OABC 是矩形,点 A 的坐标为 ( 8 , 0 ) ,点 C 的坐标为 ( 0 , 4 ) ,把矩形 OABC 沿 OB 折叠,点 C 落在点 D 处,则点 D 的坐标为  

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, BAC = 90 ° AB = AC ,过点 A 作边 BC 的垂线 AF DC 的延长线于点 E ,点 F 是垂足,连接 BE DF DF AC 于点 O .则下列结论:①四边形 ABEC 是正方形;② CO : BE = 1 : 3 ;③ DE = 2 BC ;④ S 四边形OCEF = S ΔAOD ,正确的个数是 (    )

A.1B.2C.3D.4

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,将 ABCD 沿 EF 对折,使点 A 落在点 C 处,若 A = 60 ° AD = 4 AB = 6 ,则 AE 的长为        

来源:2017年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图为某城市部分街道示意图,四边形 ABCD 为正方形,点 G 在对角线 BD 上, GE CD GF BC AD = 1500 m ,小敏行走的路线为 B A G E ,小聪行走的路线为 B A D E F .若小敏行走的路程为 3100 m ,则小聪行走的路程为   m

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 的对角线 AC BD 相交于点 O

(1)如图1, E G 分别是 OB OC 上的点, CE DG 的延长线相交于点 F .若 DF CE ,求证: OE = OG

(2)如图2, H BC 上的点,过点 H EH BC ,交线段 OB 于点 E ,连接 DH CE 于点 F ,交 OC 于点 G .若 OE = OG

①求证: ODG = OCE

②当 AB = 1 时,求 HC 的长.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 CD 的中点,延长 AE BC 的延长线于点 F

(1)求证: ΔADE ΔFCE

(2)若 BAF = 90 ° BC = 5 EF = 3 ,求 CD 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BC > AC ,点 E BC 上, CE = CA ,点 D AB 上,连接 DE ACB + ADE = 180 ° ,作 CH AB ,垂足为 H

(1)如图 a ,当 ACB = 90 ° 时,连接 CD ,过点 C CF CD BA 的延长线于点 F

①求证: FA = DE

②请猜想三条线段 DE AD CH 之间的数量关系,直接写出结论;

(2)如图 b ,当 ACB = 120 ° 时,三条线段 DE AD CH 之间存在怎样的数量关系?请证明你的结论.

来源:2016年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,一只蚂蚁在正方形 ABCD 区域内爬行,点 O 是对角线的交点, MON = 90 ° OM ON 分别交线段 AB BC M N 两点,则蚂蚁停留在阴影区域的概率为  

来源:2016年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

将矩形 ABCD 绕点 A 顺时针旋转 α ( 0 ° < α < 360 ° ) ,得到矩形 AEFG

(1)如图,当点 E BD 上时.求证: FD = CD

(2)当 α 为何值时, GC = GB ?画出图形,并说明理由.

来源:2018年山东省临沂市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E AB 边上的中点,连接 DE 并延长,交 CB 的延长线于点 F

(1)求证: AD = BF

(2)若平行四边形 ABCD 的面积为32,试求四边形 EBCD 的面积.

来源:2018年青海省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题