如图,四边形 中, ,点 、 分别在 、 上, ,过点 、 分别作 的垂线,垂足为 、 .
(1)求证: ;
(2)连接 ,线段 与 是否互相平分?请说明理由.
已知正方形 , 为射线 上的一点,以 为边作正方形 ,使点 在线段 的延长线上,连接 , .
(1)如图1,若点 在线段 的延长线上,求证: ;
(2)如图2,若点 在线段 的中点,连接 ,判断 的形状,并说明理由;
(3)如图3,若点 在线段 上,连接 ,当 平分 时,设 , ,求 及 的度数.
如图, 是 的角平分线.
(1)作线段 的垂直平分线 ,分别交 、 于点 、 ;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.
(2)连接 、 ,四边形 是 形.(直接写出答案)
如图,在平行四边形 中,对角线 , 相交于点 ,分别过点 , 作 , ,垂足分别为 , . 平分 .
(1)若 ,求 的度数;
(2)求证: .
如图,已知点 , , , 在同一条直线上, , , .
(1)求证: .
(2)判断四边形 的形状,并证明.
如图, 是 的直径,弦 与 交于点 ,且 ,连接 , .
(1)求证: ;
(2)若 , ,求弦 的长;
(3)在(2)的条件下,延长 至点 ,使 ,连接 .求证: 是 的切线.
如图,在 中, ,点 、 分别在 、 上, , 、 相交于点 .
(1)求证: ;
(2)求证: .
如图为某城市部分街道示意图,四边形 为正方形,点 在对角线 上, , , ,小敏行走的路线为 ,小聪行走的路线为 .若小敏行走的路程为 ,则小聪行走的路程为 .
已知正方形 的对角线 , 相交于点 .
(1)如图1, , 分别是 , 上的点, 与 的延长线相交于点 .若 ,求证: ;
(2)如图2, 是 上的点,过点 作 ,交线段 于点 ,连接 交 于点 ,交 于点 .若 ,
①求证: ;
②当 时,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
如图,正方形 的边长为5,点 的坐标为 ,点 在 轴上,若反比例函数 的图象过点 ,则该反比例函数的表达式为
A. B. C. D.
【操作发现】
(1)如图1, 为等边三角形,先将三角板中的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板斜边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .
①求 的度数;
② 与 相等吗?请说明理由;
【类比探究】
(2)如图2, 为等腰直角三角形, ,先将三角板的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板另一直角边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .请直接写出探究结果:
① 的度数;
②线段 , , 之间的数量关系.
(1)如图①,在四边形 中, ,点 是 的中点,若 是 的平分线,试判断 , , 之间的等量关系.
解决此问题可以用如下方法:延长 交 的延长线于点 ,易证 得到 ,从而把 , , 转化在一个三角形中即可判断.
, , 之间的等量关系 ;
(2)问题探究:如图②,在四边形 中, , 与 的延长线交于点 ,点 是 的中点,若 是 的平分线,试探究 , , 之间的等量关系,并证明你的结论.