用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为 ,小正方形地砖面积为 ,依次连接四块大正方形地砖的中心得到正方形 .则正方形 的面积为 .(用含 , 的代数式表示)
如图,在 中,分别以边 , 作等腰 , ,使 , , ,连接 , .
(1)求证 ;
(2)延长 与 相交于 .若 ,求证 .
如图, 的对角线 , 相交于点 . , 是 上的两点,并且 ,连接 , .
(1)求证: ;
(2)若 ,连接 , ,判断四边形 的形状,并说明理由.
如图,点 是 的边 的中点,连结 并延长,交 的延长线于点 .
(1)若 的长为2,求 的长.
(2)若 ,试添加一个条件,并写出 的度数.
如图,在平行四边形 中, , , 是锐角, 于点 , 是 的中点,连结 、 .若 ,则 长为
A.2B. C. D.
如图,点 是 的中点, , .
(1)求证: ;
(2)连接 ,求证:四边形 是平行四边形.
如图,在 中,点 是边 的中点,连结 并延长到点 ,使 ,连结 .
(1)求证: ;
(2)若 的面积为5,求 的面积.
如图为某城市部分街道示意图,四边形 为正方形,点 在对角线 上, , , ,小敏行走的路线为 ,小聪行走的路线为 .若小敏行走的路程为 ,则小聪行走的路程为 .
已知正方形 的对角线 , 相交于点 .
(1)如图1, , 分别是 , 上的点, 与 的延长线相交于点 .若 ,求证: ;
(2)如图2, 是 上的点,过点 作 ,交线段 于点 ,连接 交 于点 ,交 于点 .若 ,
①求证: ;
②当 时,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
已知 ,求作 ,作法:
(1)以 为圆心,任意长为半径画弧分别交 , 于点 , ;
(2)分别以 , 为圆心,以 长为半径在角的内部画弧交于点 ;
(3)作射线 ,则 为 的平分线,可得
根据以上作法,某同学有以下3种证明思路:
①可证明 ,得 ,可得;
②可证明四边形 为菱形, , 互相垂直平分,得 ,可得;
③可证明 为等边三角形, , 互相垂直平分,从而得 ,可得.
你认为该同学以上3种证明思路中,正确的有
A.①②B.①③C.②③D.①②③
平行四边形 中, , , 的中垂线分别交 , 于点 , ,垂足为 .
(1)求证: ;
(2)若 ,求 的值.
如图,线段 ,射线 , 为射线 上一点,以 为边作正方形 ,且点 、 与点 在 两侧,在线段 上取一点 ,使 ,直线 与线段 相交于点 (点 与点 、 不重合).
(1)求证: ;
(2)判断 与 的位置关系,并说明理由;
(3)求 的周长.