初中数学

如图,将正方形 OEFG 放在平面直角坐标系中, O 是坐标原点,点 E 的坐标为 ( 2 , 3 ) ,则点 F 的坐标为             

来源:2018年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,点 E 是正方形 ABCD 的边 BC 延长线上一点,连接 DE ,过顶点 B BF DE ,垂足为 F BF 分别交 AC H ,交 CD G

(1)求证: BG = DE

(2)若点 G CD 的中点,求 HG GF 的值.

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ΔABC ΔAED 均为等腰三角形,且 BAC = EAD = 90 °

(1)如图(1),点 B DE 的中点,判定四边形 BEAC 的形状,并说明理由;

(2)如图(2),若点 G EC 的中点,连接 GB 并延长至点 F ,使 CF = CD

求证:① EB = DC

EBG = BFC

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 A F C D 在同一条直线上,已知 AF = DC A = D BC / / EF ,求证: AB = DE

来源:2017年四川省泸州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,点 P Q 分别是等边 ΔABC AB BC 上的动点(端点除外),点 P 、点 Q 以相同的速度,同时从点 A 、点 B 出发.

(1)如图1,连接 AQ CP .求证: ΔABQ ΔCAP

(2)如图1,当点 P Q 分别在 AB BC 边上运动时, AQ CP 相交于点 M QMC 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;

(3)如图2,当点 P Q AB BC 的延长线上运动时,直线 AQ CP 相交于 M QMC 的大小是否变化?若变化,请说明理由;若不变,求出它的度数.

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

【问题解决】

一节数学课上,老师提出了这样一个问题:如图1,点 P 是正方形 ABCD 内一点, PA = 1 PB = 2 PC = 3 .你能求出 APB 的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将 ΔBPC 绕点 B 逆时针旋转 90 ° ,得到△ BP ' A ,连接 PP ' ,求出 APB 的度数;

思路二:将 ΔAPB 绕点 B 顺时针旋转 90 ° ,得到△ C P ' B ,连接 PP ' ,求出 APB 的度数.

请参考小明的思路,任选一种写出完整的解答过程.

【类比探究】

如图2,若点 P 是正方形 ABCD 外一点, PA = 3 PB = 1 PC = 11 ,求 APB 的度数.

来源:2018年山东省烟台市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E BC 的中点,连接 AE 并延长交 DC 的延长线于点 F ,连接 BF AC ,若 AD = AF ,求证:四边形 ABFC 是矩形.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 M 是正方形 ABCD CD 上一点,连接 AM ,作 DE AM 于点 E BF AM 于点 F ,连接 BE

(1)求证: AE = BF

(2)已知 AF = 2 ,四边形 ABED 的面积为24,求 EBF 的正弦值.

来源:2018年山东省潍坊市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图为某城市部分街道示意图,四边形 ABCD 为正方形,点 G 在对角线 BD 上, GE CD GF BC AD = 1500 m ,小敏行走的路线为 B A G E ,小聪行走的路线为 B A D E F .若小敏行走的路程为 3100 m ,则小聪行走的路程为   m

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 的对角线 AC BD 相交于点 O

(1)如图1, E G 分别是 OB OC 上的点, CE DG 的延长线相交于点 F .若 DF CE ,求证: OE = OG

(2)如图2, H BC 上的点,过点 H EH BC ,交线段 OB 于点 E ,连接 DH CE 于点 F ,交 OC 于点 G .若 OE = OG

①求证: ODG = OCE

②当 AB = 1 时,求 HC 的长.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 CD 的中点,延长 AE BC 的延长线于点 F

(1)求证: ΔADE ΔFCE

(2)若 BAF = 90 ° BC = 5 EF = 3 ,求 CD 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,把一张正方形纸片对折得到长方形 ABCD ,再沿 ADC 的平分线 DE 折叠,如图2,点 C 落在点 C ' 处,最后按图3所示方式折叠,使点 A 落在 DE 的中点 A ' 处,折痕是 FG ,若原正方形纸片的边长为 6 cm ,则 FG =    cm

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

问题背景:如图1,等腰 ΔABC 中, AB = AC BAC = 120 ° ,作 AD BC 于点 D ,则 D BC 的中点, BAD = 1 2 BAC = 60 ° ,于是 BC AB = 2 BD AB = 3

迁移应用:如图2, ΔABC ΔADE 都是等腰三角形, BAC = DAE = 120 ° D E C 三点在同一条直线上,连接 BD

①求证: ΔADB ΔAEC

②请直接写出线段 AD BD CD 之间的等量关系式;

拓展延伸:如图3,在菱形 ABCD 中, ABC = 120 ° ,在 ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE CF

①证明 ΔCEF 是等边三角形;

②若 AE = 5 CE = 2 ,求 BF 的长.

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° D AB 边上的一点,以 AD 为直径的 O BC 于点 E ,交 AC 于点 F ,过点 C CG AB AB 于点 G ,交 AE 于点 H ,过点 E 的弦 EP AB 于点 Q ( EP 不是直径),点 Q 为弦 EP 的中点,连结 BP BP 恰好为 O 的切线.

(1)求证: BC O 的切线.

(2)求证: EF ̂ = ED ̂

(3)若 sin ABC = = 3 5 AC = 15 ,求四边形 CHQE 的面积.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为2, E 为射线 CD 上一动点,以 CE 为边在正方形 ABCD 外作正方形 CEFG ,连接 BE DG ,两直线 BE DG 相交于点 P ,连接 AP ,当线段 AP 的长为整数时, AP 的长为        

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题