如图, ▱ ABCD 的对角线 AC , BD 相交于点 O . E , F 是 AC 上的两点,并且 AE = CF ,连接 DE , BF .
(1)求证: ΔDOE ≅ ΔBOF ;
(2)若 BD = EF ,连接 EB , DF ,判断四边形 EBFD 的形状,并说明理由.
某公司去年 1~3月平均每月亏损 1.5 万元,4~6 月平均每月赢利 2 万元,7~10 月平均每月赢利 1.7 万元,11~12 月平均每月亏损 2.3 万元,问:这个公司去年总的盈、亏情况如何?
如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图1-8并思考,完成下列各题: (1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________; (2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________; (3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________. (4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?
小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米): +5 ,-3, +10,-8, -6, +12,-10 问:(1)小虫是否回到原点O ? (2)小虫离开出发点O最远是多少厘米? (3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?
现有有理数将这四个数3、4、-6、10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,请你写出两个符号条件的算式
已知a、b互为相反数,m、n互为倒数,x 绝对值为2,求的值