如图,在 ΔABC 中, BC > AC ,点 E 在 BC 上, CE = CA ,点 D 在 AB 上,连接 DE , ∠ ACB + ∠ ADE = 180 ° ,作 CH ⊥ AB ,垂足为 H .
(1)如图 a ,当 ∠ ACB = 90 ° 时,连接 CD ,过点 C 作 CF ⊥ CD 交 BA 的延长线于点 F .
①求证: FA = DE ;
②请猜想三条线段 DE , AD , CH 之间的数量关系,直接写出结论;
(2)如图 b ,当 ∠ ACB = 120 ° 时,三条线段 DE , AD , CH 之间存在怎样的数量关系?请证明你的结论.
如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE. (1)求证:四边形AECF为平行四边形; (2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.
田忌赛马的故事为我们所熟知.小亮与小齐学习概率初步知识后设计了如下游戏:小亮手中有方块l0、8、6三张扑克牌,小齐手中有方块9、7、5三张扑克牌.每人从各自手中取一张牌进行比较,数字大的为本“局”获胜,每次取的牌不能放回. (1)若每人随机取手中的一张牌进行比赛,求小齐本“局”获胜的概率; (2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者.当小亮的三张牌出牌顺序为先出6,再出8,最后出l0时,小齐随机出牌应对,求小齐本次比赛获胜的概率.
校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=300,∠CBD=600. (1)求AB的长(精确到0.1米,参考数据:); (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元. (1)在李明2012年1月份存款前,储蓄盒内已有存款多少元? (2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.
如图,三角形ABC的两个顶点B、C在圆上,顶点A在圆外,AB、AC分别交圆于E、D两点,连结EC、BD. (1)求证:ΔABD∽ΔACE; (2)若ΔBEC与ΔBDC的面积相等,试判定三角形ABC的形状.