如图,在△ABC中,AB=AC,∠BAC=45°,AD和CE是△ABC的高,且AD和CE相交于点H,求证:AH=2BD.
(本题10分)如图所示,△ABC中,∠BAC=900,AB=AC=1,点D是BC上一个动点(不与B.C重合),在AC上取点E,使∠ADE=450.(1)求证:△ABD∽△DEC.(2)设BD=x,AE=y,求y关于x的函数关系式。(3当△ADE是等腰三角形时,求AE的长。
(本题10分)已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;
(本题本题10分)如图,在平面直角坐标系中,O是坐标原点,抛物线与轴正半轴交于点A,对称轴DE交轴于点E.点B在第二象限,过点B作BC⊥x轴于点C,连结AB,且AB=10,AC=8.将点B向右平移5个单位后,恰好与抛物线的顶点D重合.(1)求点D的坐标;(2)求该抛物线的解析式.
(本题8分)作图题(作图工具不限,保留作图痕迹,写出结论)(1)已知如图①、②,正方形ABCD,(1)在图①的正方形ABCD内,找一点P使∠BPC=90°,画出这个点;(2)在图②正方形ABCD内,找出所有点P使∠BPC=60°。
(本题8分)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m到点C,测得仰角为60°,已知小敏同学身高(AB)为1.6m,求这棵树的高度(DF)。(结果精确到0.1m,≈1.73).