如图1,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = BC ,点 D 、 E 分别在 AC 、 BC 边上, DC = EC ,连接 DE 、 AE 、 BD ,点 M 、 N 、 P 分别是 AE 、 BD 、 AB 的中点,连接 PM 、 PN 、 MN .
(1) BE 与 MN 的数量关系是 ;
(2)将 ΔDEC 绕点 C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;
(3)若 CB = 6 , CE = 2 ,在将图1中的 ΔDEC 绕点 C 逆时针旋转一周的过程中,当 B 、 E 、 D 三点在一条直线上时, MN 的长度为 .
(本题8分)有一个小正方体,正方体的每个面分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?
(本题8分)如图,L1,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像, (1)根据图像分别求出L1,L2的函数关系式. (2)当照明时间为多少时,两种灯的费用相等? (3)假设两种灯的使用寿命都是2000h,照明效果一样.小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).
每题6分)如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由
解下列方程组(5分2) (1) (2)
已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD. (1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA. (2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°. ①求证∠ABC=∠ADC; ②求∠CED的度数.