如图1,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = BC ,点 D 、 E 分别在 AC 、 BC 边上, DC = EC ,连接 DE 、 AE 、 BD ,点 M 、 N 、 P 分别是 AE 、 BD 、 AB 的中点,连接 PM 、 PN 、 MN .
(1) BE 与 MN 的数量关系是 ;
(2)将 ΔDEC 绕点 C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;
(3)若 CB = 6 , CE = 2 ,在将图1中的 ΔDEC 绕点 C 逆时针旋转一周的过程中,当 B 、 E 、 D 三点在一条直线上时, MN 的长度为 .
如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案) (1)点A关于点O中心对称的点的坐标为 ; (2)点A1的坐标为 ; (3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为 .
如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H. (1)请根据题意用实线补全图形; (2)求证:△AFB≌△AGE.
如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.