如图1,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = BC ,点 D 、 E 分别在 AC 、 BC 边上, DC = EC ,连接 DE 、 AE 、 BD ,点 M 、 N 、 P 分别是 AE 、 BD 、 AB 的中点,连接 PM 、 PN 、 MN .
(1) BE 与 MN 的数量关系是 ;
(2)将 ΔDEC 绕点 C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;
(3)若 CB = 6 , CE = 2 ,在将图1中的 ΔDEC 绕点 C 逆时针旋转一周的过程中,当 B 、 E 、 D 三点在一条直线上时, MN 的长度为 .
(阅读下面的题目及分析过程,并按要求进行证明. 已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE. 求证:AB=CD. 分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形. 现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.
已知:如图,△ABC中,AB=AC,∠A=120°. (1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法). (2)猜想CM与BM之间有何数量关系,并证明你的猜想.
已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使 CE=CD.求证:BD=DE.
如图,∠OBC=∠OCB,∠AOB=∠AOC,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.
已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.