如图1,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = BC ,点 D 、 E 分别在 AC 、 BC 边上, DC = EC ,连接 DE 、 AE 、 BD ,点 M 、 N 、 P 分别是 AE 、 BD 、 AB 的中点,连接 PM 、 PN 、 MN .
(1) BE 与 MN 的数量关系是 ;
(2)将 ΔDEC 绕点 C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;
(3)若 CB = 6 , CE = 2 ,在将图1中的 ΔDEC 绕点 C 逆时针旋转一周的过程中,当 B 、 E 、 D 三点在一条直线上时, MN 的长度为 .
如图,直线分别交x轴、y轴于点A、B,点P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象 于点Q,若PQ=,求k的值.
某地水利部门原计划规定若干天修建一条长为180米的水渠,开挖3天后,由于更换了先进的机器设备,实际每天比原计划多修,结果比原计划提前2天完成了全部任务,求原计划每天修建多少米?
先化简,再求值:,其中a2-4=0.
(1)计算: +︱-2︳ (2)解不等式组 ,并且把解集在数轴上表示出来.
已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4. (1)求证:△EGB是等腰三角形 (2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。