初中数学

如图,在 ABCD 中,以点 A 为圆心, AB 长为半径画弧交 AD 于点 F ,再分别以点 B F 为圆心,大于 1 2 BF 的相同长为半径画弧,两弧交于点 P ;连接 AP 并延长交 BC 于点 E ,连接 EF ,则所得四边形 ABEF 是菱形.

(1)根据以上尺规作图的过程,求证:四边形 ABEF 是菱形;

(2)若菱形 ABEF 的周长为16, AE = 4 3 ,求 C 的大小.

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知:如图①,将 D = 60 ° 的菱形 ABCD 沿对角线 AC 剪开,将 ΔADC 沿射线 DC 方向平移,得到 ΔBCE ,点 M 为边 BC 上一点(点 M 不与点 B 、点 C 重合),将射线 AM 绕点 A 逆时针旋转 60 ° ,与 EB 的延长线交于点 N ,连接 MN

(1)①求证: ANB = AMC

②探究 ΔAMN 的形状;

(2)如图②,若菱形 ABCD 变为正方形 ABCD ,将射线 AM 绕点 A 逆时针旋转 45 ° ,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.

来源:2016年辽宁省营口市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, CD O 于点 C ,与 BA 的延长线交于点 D OE AB O 于点 E ,连接 CA CE CB ,过点 A AF CE 于点 F ,延长 AF BC 于点 P

(1)求证: CA = CP

(2)连接 OF ,若 AC = 3 D = 30 ° ,求线段 OF 的长.

来源:2016年辽宁省营口市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图①, ΔAOB ΔCOD ,延长 AB CD 相交于点 E

(1)求证: DE = BE

(2)将两个三角形绕点 O 旋转,当 AEC = 90 ° 时(如图② ) ,连接 BC AD .取 BC 的中点 F ,连接 EF ,则线段 EF AD 的数量关系为  ,位置关系为  

(3)将图②中的线段 EB ED 同时绕点 E 顺时针方向旋转到图③所示位置,连接 AD BC ,取 BC 的中点 F ,连接 EF ,请你判断(2)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = 6 AC = BC = 5 ,将 ΔABC 绕点 A 按顺时针方向旋转,得到 ΔADE ,旋转角为 α ( 0 ° < α < 180 ° ) ,点 B 的对应点为点 D ,点 C 的对应点为点 E ,连接 BD BE

(1)如图,当 α = 60 ° 时,延长 BE AD 于点 F

①求证: ΔABD 是等边三角形;

②求证: BF AD AF = DF

③请直接写出 BE 的长;

(2)在旋转过程中,过点 D DG 垂直于直线 AB ,垂足为点 G ,连接 CE ,当 DAG = ACB ,且线段 DG 与线段 AE 无公共点时,请直接写出 BE + CE 的值.

温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

来源:2016年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ΔAOB 的顶点 O 为坐标原点,点 A 的坐标为 ( 4 , 0 ) ,点 B 的坐标为 ( 0 , 1 ) ,点 C 为边 AB 的中点,正方形 OBDE 的顶点 E x 轴的正半轴上,连接 CO CD CE

(1)线段 OC 的长为  

(2)求证: ΔCBD ΔCOE

(3)将正方形 OBDE 沿 x 轴正方向平移得到正方形 O 1 B 1 D 1 E 1 ,其中点 O B D E 的对应点分别为点 O 1 B 1 D 1 E 1 ,连接 C D 1 C E 1 ,设点 E 1 的坐标为 ( a , 0 ) ,其中 a 2 ,△ C D 1 E 1 的面积为 S

①当 1 < a < 2 时,请直接写出 S a 之间的函数表达式;

②在平移过程中,当 S = 1 4 时,请直接写出 a 的值.

来源:2016年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,以 AB 为直径的 O 分别与 BC AC 相交于点 D E BD = CD ,过点 D O 的切线交边 AC 于点 F

(1)求证: DF AC

(2)若 O 的半径为5, CDF = 30 ° ,求 BD ̂ 的长(结果保留 π )

来源:2016年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔABD ,点 E 在边 AB 上, CE / / BD ,连接 DE .求证:

(1) CEB = CBE

(2)四边形 BCED 是菱形.

来源:2016年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

已知: ΔABC 是等边三角形,点 E 在直线 AC 上,连接 BE ,以 BE 为边作等边三角形 BEF ,将线段 CE 绕点 C 顺时针旋转 60 ° ,得到线段 CD ,连接 AF AD ED

(1)如图1,当点 E 在线段 AC 上时,求证: ΔBCE ΔACD

(2)如图1,当点 E 在线段 AC 上时,求证:四边形 ADEF 是平行四边形;

(3)如图2,当点 E 在线段 AC 延长线上时,四边形 ADEF 还是平行四边形吗?如果是,请证明你的结论;如果不是,请说明理由.

来源:2016年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O BC O 的直径,点 A O 上的定点, AD 平分 BAC O 于点 D DG / / BC ,交 AC 延长线于点 G

(1)求证: DG O 相切;

(2)作 BE AD 于点 E CF AD 于点 F ,试判断线段 BE CF EF 三者之间的数量关系,并证明你的结论(不用尺规作图的方法补全图形).

来源:2016年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

已知在菱形 ABCD 中, ABC = 60 ° ,对角线 AC BD 相交于点 O ,点 E 是线段 BD 上一动点(不与点 B D 重合),连接 AE ,以 AE 为边在 AE 的右侧作菱形 AEFG ,且 AEF = 60 °

(1)如图1,若点 F 落在线段 BD 上,请判断:线段 EF 与线段 DF 的数量关系是    

(2)如图2,若点 F 不在线段 BD 上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;

(3)若点 C E G 三点在同一直线上,其它条件不变,请直接写出线段 BE 与线段 BD 的数量关系.

来源:2016年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D BC 边长一点, DE AB ,垂足为点 E ,点 O 在线段 ED 的延长线上,且 O 经过 C D 两点.

(1)判断直线 AC O 的位置关系,并说明理由;

(2)若 O 的半径为2, CD ̂ 的长为 10 9 π ,请求出 A 的度数.

来源:2016年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

阅读理解:

问题:我们在研究“等腰三角形底边上的任意一点到两腰的距离和为定值”时,如图①,在 ΔABC 中, AB = AC ,点 P 为底边 BC 上的任意一点, PD AB 于点 D PE AC 于点 E ,求证: PD + PF 是定值,在这个问题中,我们是如何找到这一定值的呢?

思路:我们可以将底边 BC 上的任意一点 P 移动到特殊的位置,如图②,将点 P 移动到底边的端点 B 处,这样,点 P D 都与点 B 重合,此时, PD = 0 PE = BE ,这样 PD + PE = BE .因此,在证明这一命题时,我们可以过点 B AC 边上的高 BF (如图③ ) ,证明 PD + PE = BF 即可.

请利用上述探索定值问题的思路,解决下列问题:

如图④,在正方形 ABCD 中,一直角三角板的直角顶点 E 在对角线 BD 上运动,一条直角边始终经过点 C ,另一条直角边与射线 DA 相交于点 F ,过点 F FH BD ,垂足为 H

(1)试猜想 EH CD 的数量关系,并加以证明;

(2)当点 E DB 的延长线上运动时, EH CD 之间存在怎样的数量关系?请在图⑤中画出图形并直接写出结论;

(3)如图⑥所示,如果将正方形 ABCD 改为矩形 ABCD ADB = θ ,其它条件不变,请直接写出 EH CD 的数量关系.

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC ACB = 90 ° AC < BC ,点 D AB 的中点,过点 D BC 的垂线,垂足为点 F ,过点 A C D O BC 于点 E ,连接 CD DE

(1)求证: DF O 的切线;

(2)若 AC = 3 BC = 9 ,求 DE 的长.

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BAD DCB 的平分线 AE CF 分别交 BC AD 于点 E F ,点 M N 分别为 AE CF 的中点,连接 FM EN ,试判断 FM EN 的数量关系和位置关系,并加以证明.

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

初中数学三角形解答题