在 ΔABC 中, AB = 6 , AC = BC = 5 ,将 ΔABC 绕点 A 按顺时针方向旋转,得到 ΔADE ,旋转角为 α ( 0 ° < α < 180 ° ) ,点 B 的对应点为点 D ,点 C 的对应点为点 E ,连接 BD , BE .
(1)如图,当 α = 60 ° 时,延长 BE 交 AD 于点 F .
①求证: ΔABD 是等边三角形;
②求证: BF ⊥ AD , AF = DF ;
③请直接写出 BE 的长;
(2)在旋转过程中,过点 D 作 DG 垂直于直线 AB ,垂足为点 G ,连接 CE ,当 ∠ DAG = ∠ ACB ,且线段 DG 与线段 AE 无公共点时,请直接写出 BE + CE 的值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
阅读下列材料,并解答相应问题: 对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有: x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2 =(x+a)2﹣(2a)2 =(x+2a+a)(x+a﹣2a) =(x+3a)(x﹣a). (1)像上面这样把二次三项式分解因式的数学方法是. (2)这种方法的关键是. (3)用上述方法把m2﹣6m+8分解因式.
把下列各式分解因式 (1)(x2+y2)2﹣4x2y2;(2)3x3﹣12x2y+12xy2
请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.
阅读理解 我们知道:多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解.当一个多项式(如a2+6a+8)不能写成两数和(或差)的平方的形式时,我们通常采用下面的方法: a2+6a+8=(a+3)2﹣1=(a+2)(a+4). 请仿照上面的方法,将下列各式因式分解: (1)x2﹣6x﹣27;(2)a2+3a﹣28;(3)x2﹣(2n+1)x+n2+n.
把下列各式分解因式: (1)a2﹣14ab+49b2 (2)a(x+y)﹣(a﹣b)(x+y); (3)121x2﹣144y2; (4)3x4﹣12x2.