初中数学

如图①,在 ΔABC 中, BAC = 90 ° AB = AC ,点 E AC 上(且不与点 A C 重合),在 ΔABC 的外部作 ΔCED ,使 CED = 90 ° DE = CE ,连接 AD ,分别以 AB AD 为邻边作平行四边形 ABFD ,连接 AF

(1)请直接写出线段 AF AE 的数量关系  

(2)将 ΔCED 绕点 C 逆时针旋转,当点 E 在线段 BC 上时,如图②,连接 AE ,请判断线段 AF AE 的数量关系,并证明你的结论;

(3)在图②的基础上,将 ΔCED 绕点 C 继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.

来源:2016年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 分别交线段 BC AC 于点 D E ,过点 D DF AC ,垂足为 F ,线段 FD AB 的延长线相交于点 G

(1)求证: DF O 的切线;

(2)若 CF = 1 DF = 3 ,求图中阴影部分的面积.

来源:2016年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E 为对角线 AC 上的一点,连接 BE DE

(1)如图1,求证: ΔBCE ΔDCE

(2)如图2,延长 BE 交直线 CD 于点 F G 在直线 AB 上,且 FG = FB

①求证: DE FG

②已知正方形 ABCD 的边长为2,若点 E 在对角线 AC 上移动,当 ΔBFG 为等边三角形时,求线段 DE 的长(直接写出结果,不必写出解答过程).

来源:2016年辽宁省阜新市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BC > AC ,点 E BC 上, CE = CA ,点 D AB 上,连接 DE ACB + ADE = 180 ° ,作 CH AB ,垂足为 H

(1)如图 a ,当 ACB = 90 ° 时,连接 CD ,过点 C CF CD BA 的延长线于点 F

①求证: FA = DE

②请猜想三条线段 DE AD CH 之间的数量关系,直接写出结论;

(2)如图 b ,当 ACB = 120 ° 时,三条线段 DE AD CH 之间存在怎样的数量关系?请证明你的结论.

来源:2016年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图, AE / / BF AC 平分 BAE ,且交 BF 于点 C BD 平分 ABF ,且交 AE 于点 D AC BD 相交于点 O ,连接 CD

(1)求 AOD 的度数;

(2)求证:四边形 ABCD 是菱形.

来源:2016年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图①, ΔABC ΔCDE 是等腰直角三角形,直角边 AC CD 在同一条直线上,点 M N 分别是斜边 AB DE 的中点,点 P AD 的中点,连接 AE BD

(1)猜想 PM PN 的数量关系及位置关系,请直接写出结论;

(2)现将图①中的 ΔCDE 绕着点 C 顺时针旋转 α ( 0 ° < α < 90 ° ) ,得到图②, AE MP BD 分别交于点 G H .请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)若图②中的等腰直角三角形变成直角三角形,使 BC = kAC CD = kCE ,如图③,写出 PM PN 的数量关系,并加以证明.

来源:2016年辽宁省丹东市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

阅读下面材料:

小明遇到这样一个问题:如图1, ΔABC 中, AB = AC ,点 D BC 边上, DAB = ABD BE AD ,垂足为 E ,求证: BC = 2 AE

小明经探究发现,过点 A AF BC ,垂足为 F ,得到 AFB = BEA ,从而可证 ΔABF ΔBAE (如图 2 ) ,使问题得到解决.

(1)根据阅读材料回答: ΔABF ΔBAE 全等的条件是  (填“ SSS ”、“ SAS ”、“ ASA ”、“ AAS ”或“ HL ”中的一个)

参考小明思考问题的方法,解答下列问题:

(2)如图3, ΔABC 中, AB = AC BAC = 90 ° D BC 的中点, E DC 的中点,点 F AC 的延长线上,且 CDF = EAC ,若 CF = 2 ,求 AB 的长;

(3)如图4, ΔABC 中, AB = AC BAC = 120 ° ,点 D E 分别在 AB AC 边上,且 AD = kDB (其中 0 < k < 3 3 ) AED = BCD ,求 AE EC 的值(用含 k 的式子表示).

来源:2016年辽宁省大连市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, BD ABCD 的对角线, AE BD CF BD ,垂足分别为 E F ,求证: AE = CF

来源:2016年辽宁省大连市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

小颖在学习“两点之间线段最短”查阅资料时发现: ΔABC 内总存在一点 P 与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.

【特例】如图1,点 P 为等边 ΔABC 的中心,将 ΔACP 绕点 A 逆时针旋转 60 ° 得到 ΔADE ,从而有 DE = PC ,连接 PD 得到 PD = PA ,同时 APB + APD = 120 ° + 60 ° = 180 ° ADP + ADE = 180 ° ,即 B P D E 四点共线,故 PA + PB + PC = PD + PB + DE = BE .在 ΔABC 中,另取一点 P ' ,易知点 P ' 与三个顶点连线的夹角不相等,可证明 B P ' D ' E 四点不共线,所以 P ' A + P ' B + P ' C > PA + PB + PC ,即点 P 到三个顶点距离之和最小.

【探究】(1)如图2, P ΔABC 内一点, APB = BPC = 120 ° ,证明 PA + PB + PC 的值最小;

【拓展】(2)如图3, ΔABC 中, AC = 6 BC = 8 ACB = 30 ° ,且点 P ΔABC 内一点,求点 P 到三个顶点的距离之和的最小值.

来源:2016年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知, ΔABC 为直角三角形, ACB = 90 ° ,点 P 是射线 CB 上一点(点 P 不与点 B C 重合),线段 AP 绕点 A 顺时针旋转 90 ° 得到线段 AQ ,连接 QB 交射线 AC 于点 M

(1)如图①,当 AC = BC ,点 P 在线段 CB 上时,线段 PB CM 的数量关系是  

(2)如图②,当 AC = BC ,点 P 在线段 CB 的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.

(3)如图③,若 AC BC = 5 2 ,点 P 在线段 CB 的延长线上, CM = 2 AP = 13 ,求 ΔABP 的面积.

来源:2016年辽宁省本溪市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC ,点 E 是线段 BC 延长线上一点, ED AB ,垂足为 D ED 交线段 AC 于点 F ,点 O 在线段 EF 上, O 经过 C E 两点,交 ED 于点 G

(1)求证: AC O 的切线;

(2)若 E = 30 ° AD = 1 BD = 5 ,求 O 的半径.

来源:2016年辽宁省本溪市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O EF 过点 O 且与 AB CD 分别相交于点 E F ,连接 EC

(1)求证: OE = OF

(2)若 EF AC ΔBEC 的周长是10,求 ABCD 的周长.

来源:2016年辽宁省本溪市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,点 F 从点 B 向点 C 运动,点 E 从点 A 沿射线 CA 方向运动,且 BF = AE ,连接 EF AB D

(1)如图1,当 AB = BC 时,求证: AB = 2 AD + BF

(2)如图2,当 AB = 2 3 BC 时,① AD = 6 BF = 15 2 ,则 AB =   

②过点 F FP AB 于点 P ,探究线段 AB AD FP 之间的数量关系,直接写出结论,不需证明.

来源:2016年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC 为钝角, B = 45 ° ,点 P 是边 BC 延长线上一点,以点 C 为顶点, CP 为边,在射线 BP 下方作 PCF = B

(1)在射线 CF 上取点 E ,连接 AE 交线段 BC 于点 D

①如图1,若 AD = DE ,请直接写出线段 A CE 的数量关系和位置关系;

②如图2,若 AD = 2 DE ,判断线段 AB CE 的数量关系和位置关系,并说明理由;

(2)如图3,反向延长射线 CF ,交射线 BA 于点 C ' ,将 PCF 沿 CC ' 方向平移,使顶点 C 落在点 C ' 处,记平移后的 PCF P ' C ' F ' ,将 P ' C ' F ' 绕点 C ' 顺时针旋转角 α ( 0 ° < α < 45 ° ) C ' F ' 交线段 BC 于点 M C ' P ' 交射线 BP 于点 N ,请直接写出线段 BM MN CN 之间的数量关系.

来源:2017年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

四边形 ABCD 是边长为4的正方形,点 E 在边 AD 所在直线上,连接 CE ,以 CE 为边,作正方形 CEFG (点 D ,点 F 在直线 CE 的同侧),连接 BF

(1)如图1,当点 E 与点 A 重合时,请直接写出 BF 的长;

(2)如图2,当点 E 在线段 AD 上时, AE = 1

①求点 F AD 的距离;

②求 BF 的长;

(3)若 BF = 3 10 ,请直接写出此时 AE 的长.

来源:2017年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学三角形解答题