如图①, ΔABC 与 ΔCDE 是等腰直角三角形,直角边 AC 、 CD 在同一条直线上,点 M 、 N 分别是斜边 AB 、 DE 的中点,点 P 为 AD 的中点,连接 AE 、 BD .
(1)猜想 PM 与 PN 的数量关系及位置关系,请直接写出结论;
(2)现将图①中的 ΔCDE 绕着点 C 顺时针旋转 α ( 0 ° < α < 90 ° ) ,得到图②, AE 与 MP 、 BD 分别交于点 G 、 H .请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)若图②中的等腰直角三角形变成直角三角形,使 BC = kAC , CD = kCE ,如图③,写出 PM 与 PN 的数量关系,并加以证明.
某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。 (1)求每天的销售量y(千克)与销售单价x(元)之间的函数关系式。 (2)该超市销售这种水果每天获取的利润为1040元,那么销售单价为多少元?
下图是单位长度为1的正方形网格,点A、B、C都在格点上; (1)画出将图中的△ABC绕点A逆时针旋转90°的△AB’C’ ,(其中B、C的对应点分别是 B’、C’) (2)求(1)中点B在运动过程中所经过的弧长. (3)求(1)中边AC在运动过程中所扫过的区域的面积.
如图,纸片ABCD是一个菱形,其边长为2,∠BAD=120°,以点A为圆心的扇形与边BC相切于点E,与AB、AD分别相交于点F、G; (1)请你判断所作的扇形与边CD的位置关系,并说明理由; (2)若以所作出的扇形为侧面围成一个圆锥,求该圆锥的全面积.
已知关于x的一元二次方程x2 + mx +n+1=0的一根为2. (1)用m的代数式表示n; (2)求证:关于y的一元二次方程y2 +my+n=0总有两个不相等的实数根。
如图,,试求和的值.(4+4)