如图①, ΔABC 与 ΔCDE 是等腰直角三角形,直角边 AC 、 CD 在同一条直线上,点 M 、 N 分别是斜边 AB 、 DE 的中点,点 P 为 AD 的中点,连接 AE 、 BD .
(1)猜想 PM 与 PN 的数量关系及位置关系,请直接写出结论;
(2)现将图①中的 ΔCDE 绕着点 C 顺时针旋转 α ( 0 ° < α < 90 ° ) ,得到图②, AE 与 MP 、 BD 分别交于点 G 、 H .请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)若图②中的等腰直角三角形变成直角三角形,使 BC = kAC , CD = kCE ,如图③,写出 PM 与 PN 的数量关系,并加以证明.
某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为.第三组的频数是12.请你回答:(1)本次活动共有 件作品参赛;(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是 度。(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?
如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠ABC=60°.求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.
我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a= ,b= .②如果顺次连接A、B、C、D四点,那么四边形ABCD为( )A.平行四边形 B.矩形 C.菱形 D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.
如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP的距离.
在平面直角坐标系xOy中,抛物线经过点A(4,0)和B(0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C,点B关于抛物线对称轴对称的点为D,求直线CD的表达式;(3)在(2)的条件下,记该抛物线在点A,B之间的部分(含点A,B)为图象G,如果图象G向上平移m(m>0)个单位后与直线CD只有一个公共点,请结合函数的图象,直接写出m的取值范围.